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Abstract 
 
 The nearly 40 year history of quantitative EEG (QEEG) normative databases are 
reviewed with special emphasis on the implementation of scientific and statistical 
standards.   Differences between normative databases and standard control studies are 
discussed.  The application of scientific and statistical standards such as peer reviewed 
publications, inclusion/exclusion criteria, number of subjects per age group, Gaussian 
tests for normality, cross-validation tests, amplifier matching, clinical correlations and 
FDA registration are presented in a historical context.   A check list of “Gold Standards” 
for the evaluation of QEEG normative databases is presented in which the more checks 
then the higher the scientific and statistical standards for a given normative database.  
The goal of the paper is to provide an historical perspective and brief review of QEEG 
normative databases in order to encourage both users and authors of normative databases 
to strive for standardization. 
 
Key words: QEEG normative database, cross-validation, Gaussian 
distributions 
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Introduction 
 Normative reference databases serve a vital and important function in modern 
clinical science and patient evaluation.   There are numerous clinical normative databases 
that aid in the evaluation of a wide range of clinical disorders.  For example, blood 
constituent normative databases, MRI, fMRI and Positron emission tomography (PET) 
normative databases, ocular and retinal normative databases, blood pressure normative 
databases, nerve conduction velocity normative databases, postural databases, bone 
density normative databases, ultra sound normative databases, genetic normative 
databases and motor development normative databases, to name a few.  A comprehensive 
survey of existing clinical normative databases can be obtained by searching the National 
Library of Medicine’s database using the search terms “Normative Databases” at: 
http://www.ncbi.nlm.nih.gov/sites/entrez. 
 All clinically applied normative databases share a common set of statistical and 
scientific standards that have evolved over the years.  The standards include peer 
reviewed publications, disclosure of the inclusion/exclusion criteria, tests of statistical 
validity, tests of reliability, cross-validation tests, adequate sample sizes for different age 
groups, etc.   Normative databases are distinct from non-clinical control groups in their 
scope and their sampling restriction to clinically normal or otherwise healthy individuals 
for the purpose of comparison.   Another distinguishing characteristic of normative 
databases is the ability to compare a single individual to a population of “normal” 
individuals in order to identify the measures that are deviant from normal and the 
magnitude of deviation.    Normative databases themselves do not diagnose a patient’s 
clinical problem.  Rather, a trained professional first evaluates the patient’s clinical 
history and clinical symptoms and complaints and then uses the results of normative 
database comparisons in order to aid in the development of an accurate clinical diagnosis.   

As mentioned previously the age range, the number of samples per age group, the 
mixture of gender and socioeconomic status, geographical distribution and thus a 
“representative” population are also distinguishing characteristics of a “normative” 
database because an individual is compared to a group of subjects comprising a reference 
normative database.  In the case of QEEG, matching of amplifier frequency 
characteristics when a patient’s EEG was acquired by a different amplifier than the 
database amplifier is also critical for normative databases but rarely important for 
standard “control group” studies.  Cultural and ethnic factors and day-to-day variance and 
random environmental factors are typically factored into “normative” databases as 
“random control” factors, in contrast, a more limited sampling process is often used in 
non-clinical “control groups”.   The adequacy of the sample size of any database is 
related to the “effect size” and the statistical power and thus sample size varies depending 
on these factors (Cohen, 1977).  In general, sample size is less important than careful 
calibration, elimination of artifact, accepted standards during the collection of data and 
accepted standards for the analysis of data and approximation to a Gaussian distribution.  
Peer reviewed publications are essential for all databases because high standards are 
required by anonymous reviewers and scientifically sub-standard databases will either not 
be published or if they are then the limitations are made public.   To not publish a 
normative database in a peer reviewed journal is unacceptable and is a non-starter when a 
clinician considers the database that they are going to use to evaluate a patient.   State 
licensing agencies and other authorities should be notified when sub-standard databases 

http://www.ncbi.nlm.nih.gov/sites/entrez
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are used to evaluate a clinical patient and certainly signed informed consent informing 
the patient that an unpublished and/or sub-standard database is being used to evaluate the 
patient is necessary to protect the public. 

 
Definitions of Digital EEG and Quantitative EEG (QEEG) 
 Nuwer (1997) defined digital EEG as “. . . . the paperless acquisition and 
recording of the EEG via computer-based instrumentation, with waveform storage in a 
digital format on electronic media, and waveform display on an electronic monitor or 
other computer output device.”   The primary purposes of digital EEG is for efficiency of 
storage, the saving of paper and for the purposes of visual examination of the EEG 
tracings.   An attempt was made to distinguish digital EEG from quantitative EEG by 
defining quantitative EEG (QEEG or qEEG) as “the mathematical processing of digitally 
recorded EEG in order to highlight specific waveform components, transform the EEG 
into a format or domain that elucidates relevant information, or associate numerical 
results with the EEG data for subsequent review or comparison.”  (Nuwer, 1997) (at p. 
278).   The reality is that there is no clear distinction between digital EEG and 
quantitative EEG because both involve mathematical transformations.    For example, the 
process of analog-to-digital conversion involves transforms by analog and digital filtering 
as well as amplification and sample and hold of the electrical scalp potentials and re-
montaging and reformatting the EEG.    Clearly, digital EEG involves mathematical and 
transformational processing using a computer and therefore the distinction between 
quantitative EEG and digital EEG is weak and artificial.    
 
 
Simultaneous Digital EEG Tracings and Quantitative EEG 
 Figure one illustrates a common modern quantitative EEG analysis where EEG 
traces are viewed and examined at the same time that quantitative analyses are displayed 
so as to facilitate and extend analytical power. 
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Fig. 1 – Example of conventional digital EEG (left) and QEEG (right) on the same screen at the same time.   
The conventional EEG includes examination and marking of EEG traces and events.   The QEEG (right) 
includes the Fast Fourier Transform (Top right) and normative database Z scores (Bottom right). 
 
 Commonsense dictates that the digital EEG and QEEG when simultaneously 
available facilitates rapid and accurate and reliable evaluation of the 
electroencephalograpm.  Since 1929 when the human EEG was first measured (Berger, 
1929) modern science has learned an enormous amount about the current sources of the 
EEG and the manner in which ensembles of synaptic generators are synchronously 
organized.   It is known that short distance local generators are connected by white matter 
axons to other local generators that can be many centimeters distant.  The interplay and 
coordination of short distance local generators with the longer distant white matter 
connections has been mathematically modeled and shown to be essential for our 
understanding of the genesis of the EEG (Nunez, 1981; 1995; Thatcher and John, 1977; 
Thatcher et al, 1986).   

The first QEEG study was by Hans Berger (1932; 1934) when he used the Fourier 
transform to spectrally analyze the EEG because Dr. Berger recognized the importance of 
quantification and objectivity in the evaluation of the electroencephalogram (EEG).  The 
relevance of quantitative EEG (QEEG) to the diagnosis and prognosis of brain 
dysfunction stems directly from the quantitative EEG’s ability to reliably and objectively 
evaluate the distribution of brain electrical energies and to compare different EEG 
measures to a normative database. 
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Test-Retest Reliability of QEEG 
 The clinical sensitivity and specificity of QEEG is directly related to the stability 
and reliability of QEEG upon repeat testing.  The scientific literature shows that QEEG is 
highly reliable and reproducible (Hughes and John, 1999; Aruda et al, 1996; Burgess and 
Gruzelier, 1993; Corsi-Cabera et al, 1997; Gasser et al, 1985; Hamilton-Bruce et al, 
1991; Harmony et al, 1993; Lund et al, 1995; Duffy et al, 1994; Salinsky et al, 1991; 
Pollock et al, 1991).   The inherent stability and reliability of QEEG can even be 
demonstrated with quite small sample sizes.  For example, Salinsky et al (1991) reported 
that repeated 20-second. samples of EEG were about 82% reliable, at 40 seconds the 
samples were about 90% reliable and at 60 seconds they were approximately 92% 
reliable.   Gasser et al (1985) concluded that: “20 sec. of activity are sufficient to reduce 
adequately the variability inherent in the EEG” and Hamilton-Bruce et al, (1991) found 
statistically high reliability when the same EEG was independently analyzed by three 
different individuals.  Although the QEEG is highly reliable even with relatively short 
sample sizes, it is the recommendation of most QEEG experts that larger samples sizes be 
used, for example, at least 60 seconds of artifact free EEG, and preferably 2 to 5 minutes, 
should be used in a clinical evaluation (Duffy et al, 1994; Hughes and John, 1999). 

Although there are common purposes and applications of normative databases in 
clinical science, nonetheless, each type of normative database poses its own special 
requirements and details.  In the sections to follow we focus exclusively on quantitative 
electroencephalographic (QEEG) normative databases.  The goal of this paper is to 
present the history of the application of scientific standards as they apply to QEEG and to 
provide a practical guide for the understanding and evaluation of QEEG normative 
databases. 

 
History of Standards of QEEG Normative Databases 

The earliest quantitative EEG (QEEG) reference normative database was 
developed in the 1950s at UCLA as part of the NASA study and selection of astronaughts 
for purposes of space travel (Adey et al, 1961; 1964a; 1964b).      The UCLA database 
involved several hundred carefully selected subjects who were candidates for the 
burgeoning NASA space exploration program as well as UCLA faculty and students.    
Careful clinical inclusion and exclusion criteria were not used because there was no 
intended clinical application of this early QEEG reference normative database.   Instead, 
the essential quantitative foundations of QEEG normative databases were tested such as 
the calculation of means and standard deviations and measures of Gaussianity, complex 
demodulation, Fourier spectral analysis and basic statistical parameters necessary for any 
reference normative database.    

Predictive accuracy and error rates depend on the data that make up a given EEG 
database as well as the statistical methods used to produce and compare QEEG normative 
databases. Historically, many of the statistical standards of normative databases were first 
applied by two Swedish Neurologist, Dr. Milos Matousek and Dr. Ingemar Petersen in 
1973 in the first peer reviewed publication of a normative database (Matousek and 
Petersen, 1973a; 1973b).   Matousek and Petersen set the standards of peer reviewed 
publications, clinical inclusion/exclusion criteria and parametric statistical standards for 
future QEEG normative databases.   The cultural validity and reliability of the Matousek 
and Petersen 1973 database were established by E. Roy John and colleagues in 1975 
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when they successfully replicated, by independent cross-validation, the Matousek and 
Petersen Swedish database after collecting EEG from carefully screened 9 to 11 year old 
Harlem black children who were performing at grade level and had no history of 
neurological disorders (John, 1977; John et al, 1977; 1987).     

 
History of Inclusion/Exclusion Criteria and “Representative Samples” 

Matousek and Petersen (Matousek and Petersen, 1973a; 1973b) measured QEEG 
in 401 subjects (218 females) ranging in age from 2 months to 22 years and living in 
Stockholm, Sweden all without any negative clinical histories and performing at grade 
level.  The sample sizes varied from 18 to 49 per one year age groupings.   Similar 
inclusion/exclusion criteria were later used in the construction of the NYU normative 
database (John, 1977; John et al, 1977; 1987), the University of Maryland (UM) database 
(Thatcher, 1988; Thatcher et al, 1983; 1986; 1987; 2003; 2005a; 2005b) and Gordon and 
colleagues (2005) in the development of independent QEEG normative databases.  
Careful screening of the subjects that comprise a normative database is critical so that 
representative samples of healthy and otherwise normally functioning individuals are 
selected and individuals with a history of neurological problems, psychiatric problems, 
school failure and other deviant behaviors are excluded.  

Representative sampling means a demographically balanced sample of different 
genders, different ethnic backgrounds, different socio-economic status and different ages.  
This is important in evaluating a QEEG normative database because the database is a 
“reference” in which many demographic factors must be included in order to minimize 
sampling bias.   

 
History of Artifact Free Data and Reliability Measures 
 Sample adequacy in a QEEG normative database requires strict removal of 
artifact and measures of high test re-test reliability.    Historically, multiple trained 
individuals visually examined the EEG samples from each and every subject that was to 
be included in the database.   Removal of artifact by visual examination is necessary 
regardless of any digital signal processing methods that may be used to remove artifact.   
Split-half reliability and test re-test reliability measures with values > 0.9 is also 
important in order to provide a quantitative measure of the internal consistency and 
reliability of the normative database (John, 1977; John et al, 1987; Thatcher, 1998; 
Thatcher et al, 2003; Duffy, 1994). 
 Caution should be exercised when using reconstruction methods such as 
Independent Components Analysis (ICA) or Principal Component Analysis (PCA) to 
compute a QEEG normative database.  In general, these methods should be avoided 
because they will invalidate the computation of coherence and phase differences because 
the regression and reconstruction effects the raw digital samples themselves and distorts 
coherence and phase.  The best method of eliminating artifact is by making sure that high 
standards of recording are met and that the patient’s EEG is monitored during recording 
so that artifact can be minimized.  Elimination of artifact after recording should involve 
the deletion of the artifact from the analysis and not by regression and/or reconstruction 
using methods such as ICA or PCA.    
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History of Sample Size per Age Group 
 There is no absolute sample size that is best for a QEEG database because 
statistically sample size is related to the “effect size” and “power” (Hayes, 1973; Winer, 
19971).   The smaller the effect size then the larger the sample size necessary to detect 
that effect.   The power of a statistical measure varies as a function of sample size and the 
effect size (Cohen, 1977).  Another issue related to sample size is the degree to which a 
sample approximates a Gaussian distribution.   As explained in the section below, 
increased sample size is often necessary in order to achieve closer approximations to 
Gaussian which in turn is related to the accuracy of cross-validation.  Thus, the sample 
size is one of several inter-related issues in all normative databases and the sample size 
should not be singled out as being the most important factor in a QEEG normative 
database.   It is best to refer to “adequate” sample size as measured by the extent to which 
the samples are Gaussian and the degree of cross-validation accuracy (John et al, 1987; 
Thatcher et al, 2003).   The term “adequate” is related to the effect size, which in the case 
of human development is critical because different rates of maturation occur at different 
ages. 

As mentioned previously, the Matousek and Petersen (1973a; 1973b) normative 
QEEG database had a total sample size of 401 in children ranging in age from 1 month to 
22 years.   It was known that there are rapid changes in EEG measures during early 
childhood and for this reason Matousek and Petersen (1973a) and Hagne et al (1973) 
emphasized using relatively large sample sizes during the period of time when the brain 
is changing most rapidly.   For example, Hagne et al (1973) used a sample size of N = 29 
for infants from three weeks of age to 1 year of age.  In step with this fact were the 
subsequent QEEG normative databases at NYU (John et al, 1977; 1987) and UM 
(Thatcher, 1998; Thatcher et al, 1987; 2003) in which the preferential increase in sample 
size during early childhood was emphasized as well as during old age when potential 
rapid declines in neural function may occur. 

 
History of Age Stratification vs. Age Regression 

There are two general approaches that deal with the issue of sample size per age 
group: 1- Age stratification and, 2- Age Regression.  Age stratification involves 
computing means and standard deviations of age groupings of the subjects (Matousek and 
Petersen, 1973a; John, 1977; Thatcher et al, 1987; 2003).  The grouping of subjects and 
thus the number of subjects per age group depends on the age of the sample and the 
relative rate of maturation.   Matousek and Petersen (1973a; 1973b) used one year age 
groupings, Thatcher et al (1987) (University of Maryland database) used one year age 
groupings as well as two and five year age groupings (Thatcher et al, 2003; 2005a; 
2005b).   A simple method to increase stability and sample size is to use “sliding” 
averages for the age stratification.   For example, Thatcher et al (2003) used one year age 
groups with .75 year overlapping to produce a series of sliding averages and more 
recently used two year age groupings with .75 year overlapping.   Which method is 
chosen depends on the accuracy of cross-validation and age resolution with careful 
examination of validation at different ages of the subjects. 

The second method called “Age Regression” was first used by John et al (1977; 
1980) in which a least squares regression was used to fit a straight line to the EEG data 
samples over the entire age range of the subjects.   Once the intercepts and coefficients 
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are computed then one simply evaluates the polynomial equation using the age of the 
subject in order to produce the expected mean and standard deviation for that particular 
subject.  A Z score is then computed by the standard method Z = X – x/sd.  An important 
consideration when using an age regression method is the order of the polynomial and the 
amount of variance accounted for by a polynomial.   If there are rapid maturational 
changes in the brain thus producing a “growth spurt” then a simple linear regression is 
likely to miss the growth spurt.   A quadratic or cubic polynomial which will account for 
more of the variance over age will likely detect growth spurts better than a simple linear 
regression. 

 
History of Gaussian Distribution Approximation and Cross-Validation 

 The statistics of replication and independent cross-validation of normative QEEG 
databases was first applied by E. Roy John and collaborators in 1974 to 1977 (John, 
1977; John et al, 1977; 1987).   As mentioned previously, the first independent cross-
validation of a normative QEEG database was by John and colleagues in which the EEG 
from a sample of New York Harlem black children were compared to the Matousek and 
Petersen (5, 6) norms with correlations > 0.8 in many instances and statistically 
significant correlations for the majority of the measures (John, 1977).  The importance of 
approximation to a Gaussian distribution was emphasized by both Dr. E. Roy John and 
Dr. Frank Duffy a Harvard Neurologist in the 1970s and 1980s.  In 1994 the American 
EEG Association produced a position paper in which the statistical standards of 
replication, cross-validation, reliability and Gaussian approximation were iterated as 
acceptable basic standards to be met by any normative QEEG database (Duffy, 1994).   
The American EEG Society included the same standards.  Dr. John and colleaques from 
1980 to 1990s continued to evaluate and analyze the statistical properties of normative 
QEEG databases, including EEG samples obtained from different laboratories in non 
USA locations in the world.    Gaussian approximations and reliability and cross-
validation statistical standards for QEEG databases were applied to all of these databases 
by John and Colleagues (John et al, 1987; 1980; Prichep, 2005) and as well as by other 
QEEG normative databases, for example, Gasser et al (1988a; 1988b); Thatcher and 
colleagues (1983; 1986; 1987; 2003; 2005a; 2005b). 
 Figure 2 are examples of approximate Gaussian distributions and the sensitivity as 
calculated in figure 3.   Table I is an example of a standard table of sensitivities for 
different age groups in the University of Maryland QEEG normative database (Thatcher 
et al, 2003). 
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Fig. 2 - Histograms of the Z-Score Gaussian distributions and cross-validation for all ages (from Thatcher 
et al, 2003). 

 
Figure 3 shows an example of Gaussian approximation and cross-validation of a 

QEEG normative database. 
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1.96Fig.-3 An example of a normal or Gaussian curve showing values of Z (± ), that includes the 
proportion which is .95 of the total area. The left and right tails of the distribution show probability values 
of .025 (one-tailed).    The classification accuracy of any sample of subjects is based on the assumption of a 
normal distribution can be compared.  The probability of finding an observed EEG value in a given range 
of any population can be determined and then the sensitivity of the sample can be tested by cross-validation 
(adapted from Thatcher et al, 2003). 
 
 Figure 3 is an illustrative bell-shaped curve showing the ideal Gaussian and the 
average cross-validation values of the database by which estimates of statistical 
sensitivity can be derived. True positives equal the percentage of Z-scores that lay within 
the tails of the Gaussian distribution. False negatives (FN) equal the percentage of Z-
scores that fall outside of the tails of the Gaussian distribution. The error rates or the 
statistical sensitivity of a quantitative electroencephalogram (QEEG) normative database 
are directly related to the deviation from a Gaussian distribution. Figure 3 depicts a 
mathematical method of estimating the statistical sensitivity of a normative EEG database 
in terms of the deviation from Gaussian.   
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Table I – Example of cross-validation and sensitivity tests of a normative database using the procedures 
described in Figure 3. (Adapted from Thatcher et al, 2003). 
  
History of the use of the Z Score and QEEG Normative Databases 
 Matousek and Petersen (1973a; 1973b) computed means and standard deviations 
in one year age groups and were the first to use t-tests and Z scores to compare an 
individual to the normative database means and standard deviations.   The T-Test is 
defined as the ratio of the difference between values divided by the standard deviation.  
The Z statistic is defined as the difference between the value from an individual and the 
mean of the population divided by the standard deviation of the population or 

SD
XxZ i −= . 

John and colleques (John, 1977; John et al, 1977; 1987) expanded on the use of the Z 
score for clinical evaluation including the use of multivariate measures such as the 
Mahalanobis distance metric (Cooley and Lohnes, 1971; John et al, 1987; John et al, 
1988).  A direct normalization of the Gaussian distribution using Z scores is useful in 
comparing individuals to a QEEG normative database (Thatcher, 1998; Thatcher et al, 
2003).  That is, the standard score form of the Gaussian is where the mean = 0 and 
standard deviation = 1 or, by substitution into the Gaussian equation for a bell shaped 
curve, then 
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2/2

2
1 zeY −=
π

 , where Y = Gaussian distribution and the Z score is a deviation in 

standard deviation units measured along the baseline of the Gaussian curve from a mean 
of 0 and a standard deviation = 1 and deviations to the right of the mean being positive 
and those to the left negative.  By substituting different values of Z then different values 
of Y can be calculated.   For example, when Z = 0, Y = 0.3989 or, in other words, the 
height of the curve at the mean of the normal distribution in standard-score form is given 
by the number 0.3989.  For purposes of assessing deviation from normal, the values of Z 
above and below the mean, which include 95% of the area of the Gaussian is often used 
as a level of confidence necessary to minimize Type I and Type II errors (Hayes, 1973).   
The standard-score equation is also used to cross-validate a normative database which 
again emphasizes the importance of approximation to a Gaussian for any normative 
QEEG database. 
 
Cross-Validations of Normative Databases: New York University and University of 
Maryland 
 As described previously, cross-validation is critical in determining the sensitivity 
and false positives and false negatives of a normative database.    Due to the expense to 
acquire independent data, most cross-validations are computed using a leave-one-out 
cross-validation procedure (John et al, 1977; 1987; Thatcher et al, 2003; 2005a; 2005b).  
A completely independent cross-validation using different subjects is the best method of 
cross-validation although it is, as previously stated, more expensive and difficult and, 
accordingly, no independent cross-validations of two different normative databases have 
been conducted in the last 30 years, until recently.   In 2007 an independent cross-
validation of the New York University and the University of Maryland databases were 
conducted.    The study was conducted because a company had collected raw digital EEG 
from several hundred clinical patients and had computed Z scores using the New York 
University (NYU) normative database (John, 1977; John et al, 1977; 1987; 1988).   The 
question was: does the University of Maryland (UM) normative database produce similar 
of comparable Z scores as the NYU database using the same exact raw digital data?   The 
correlation coefficients from the independent cross-validation between the NYU and UM 
normative databases is shown in Table II.   The analysis included 332 psychiatric patients 
and an age range from 6.2 years to 84.9 years.  Anterior includes electrodes Fp1/2, Fz, 
F3/4, F7/8, T3/4, C3/4 & Cz.  Posterior includes electrodes O1/2, P3/4, T5/6 and Pz.   
The correlations ranged from 0.757 to 0.979.  The high degree of cross-validation 
accuracy in this study is emphasized by the fact that at 331 degrees of freedom a 
correlation of 0.142 is significant at P < .01. 
 
 
 

Table II 
Correlation Coefficients from an Independent Cross-Validation of NYU vs UM 
Normative EEG Databases (Reprinted by permission of CNS Response, Inc.) 

 
 Absolute 

Power  
Absolute 
Power 

Relative 
Power 

Relative Coherence Coherence Amp. Amp. 
Power Asym Asym 
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 Anterior Posterior Anterior Posterior Anterior Posterior Anterior Posterior
Delta 0.815 0.880 0.854 0.925 0.804 0.935 0.854 0.820 
Theta 0.926 0.940 0.877 0.895 0.853 0.914 0.902 0.816 
Alpha 0.951 0.958 0.901 0.887 0.873 0.046 0.899 0.979 
Beta 0.820 0.882 0.757 0.784 0.848 0.900 0.846 0.876 
 
 Figure 4 are bar graphs of the correlation coefficients from the independent cross-
validation comparison between the NYU and the UM Z scores.   This study is important 
because it demonstrates a high degree of cross-correlation and cross-validation between 
two independent QEEG normative databases.    Both the NYU and UM databases were 
constructed in medical centers with government grants and oversight and both have been 
clinically validated in peer reviewed publications (John et al, 1977; 1987; 1988l Thatcher 
et al, 1986; 1987; 2003; 2005b) as well has having FDA registration. 
 

Fig. 4 – Results of an independent cross-validation comparison of Z scores from 332 psychiatric patients 
ranging in age from 6.2 years to 84.9 years using the NYU and UM normative databases.  Anterior and 
posterior refers to the anterior and posterior location of electrodes.  Highly significant independent cross-
validation of was observed which shows the high degree of consistency between two peer reviewed and 
clinically validated QEEG normative databases.  (Reprinted with permission from Brian McDonald, CNS 
Response, Inc.   
 
History of Amplifier Matching and QEEG Normative Databases 
 Surprisingly, this particular standard was largely neglected during much of the 
history of QEEG normative databases.   E. Roy John and colleagues (1982 to 1988) 
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formed a consortium of universities and medical schools that were using QEEG who met 
several times over a few years and was one of the supporters of the edited volume by 
John titled “Machinery of the Mind” (John, 1990).   One of the important issues 
consistently raised at the consortium meetings was the need for “standardization”.   In the 
1980s it was technically difficult to match different EEG systems because of the infantile 
development of analysis software.   This history forced most QEEG users to use relative 
power because absolute power was not comparable between different EEG machines.   
There was no frequency response standardization between different EEG machines and 
thus there was no cross-platform standardization of QEEG.   It was not until the mid 
1990s that computer speed and software development made amplifier matching and 
normative database amplifier equilibration a possibility.   The first use of standardized 
matching of amplifiers was to the University of Maryland (UM) database.   The 
procedure involved injecting micro volt calibration sign waves into the input of 
amplifiers of different EEG machines and then inject the same micro volt signals into the 
normative database amplifiers thus obtaining two frequency response curves (Thatcher et 
al, 2003).   Equilibration of a normative QEEG database to different EEG machines is the 
ratio of the frequency response curves of the two amplifiers that are then used as 
amplitude scaling coefficients in the power spectral analysis.   This was an important step 
because suddenly absolute power Z scores and normative database comparisons became 
possible.   Relative power is a last resort type of measure to be used when there is no 
equilibration of absolute amplitude because relative power always distorts the spectrum 
and relative power depends on absolute power in order to interpret relative power.  This 
is because relative power is a percentage of the whole and thus an increase in mid “beta”, 
e.g., 14 – 18 Hz will be seen as a decrease in “theta”, e.g., 4 – 7 Hz when in fact there is 
no change in theta and vice versa.  The frequencies in absolute power are independent of 
each other and are not distorted.   It is always best to use absolute values when ever 
possible and not relative values or even ratios.   A ratio can change due to the 
denominator or the numerator and one can not determine which has changed without 
evaluating the absolute values used to compute the ratios. 

As illustrated in Figure 5, a simple method of amplifier equilibration to exactly 
match the frequency characteristics of different amplifiers is to calibrate the amplifiers 
using micro-volt sine waves at discrete frequencies from 1 to 30 Hz ( or whatever 
frequency range matches the normative database amplifiers) and then injecting the same 
calibrated sine waves into the inputs of the EEG amplifier to be compared to the 
normative database amplifiers.   Then take the ratio of the micro-volt values at each 
frequency and use the ratios as gain or amplitude scalars in the FFT to exactly equate the 
spectral output values to the normative database amplifiers.  This method creates a 
universal equilibration process so that micro-volts in a given amplifier are equal to micro-
volts in all other amplifiers including the normative database amplifiers.   By 
equilibrating amplifiers then direct comparisons between a given patient’s EEG and the 
normative database means and standard deviations is valid and meaningful.   If amplifier 
matching is not accomplished then all normative database comparisons are potentially 
invalid and caution should be exercised not to use a normative database when amplifiers 
have not been equilibrated.  We have found that amplifiers differ primarily from 0 to 2 
Hz and in order to accurately match to the normative database amplifiers one can filter at 
1 Hz, thus avoiding mismatches at less than 1 Hz.  There are a wide variety of different 



 16

frequency response curves for different amplifiers and there is no one “gold standard” for 
EEG amplifiers.  For older amplifiers that have a more limited frequency response, e.g., 
the NYU and University of Maryland amplifiers and Biologic, Grass and Cadwell, etc. 
then the match of frequencies is limited to the frequency range that is in common 
between the two amplifier systems.  For example, Deymed has a nearly flat response 
from 0.5 Hz to 70 Hz and thus the match to the NYU & U of M amplifiers is only from 
0.5 Hz to 30 Hz because the latter amplifiers used cut-off filters at approximately 30 Hz.   
Many amplifiers currently in use also have cut-off frequencies of around 30 Hz but there 
is still a lot of information in the EEG from 0.5 Hz to 30 Hz and equilibration is 
necessary to optimally use these amplifiers in a normative database comparison. 

 

Fig. 5 – Flow chart of the amplifier standardization procedure.  Microvolt (uV) sine waves are injected into 
the input of amplifiers and the frequency responses are calculated.  The frequency response of the 
normative database amplifiers and the frequency response of the Deymed amplifier are in the middle graph.   
As shown in the right graph, EEG amplifier systems are then equated as the ratio of the two amplifier 
frequency response curves and the spectral analysis is adjusted based on the equilibration ratios or 
amplitude scalars (graph on the right) so that there is a standardized import and matching of amplifier 
systems with the common unit being micro volts (uV).  
 
 Figure 6 shows the frequency response curves of the University of Maryland and 
the NYU normative database amplifiers.  It can be seen that the normative database 
amplifier is approximately 3 db down at 0.5 Hz and 27.5 Hz and approximately 35% 
attenuation at 30 Hz.     Because of the sharp high and low frequency cut-offs of the 
normative database amplifiers the University of Maryland normative comparisons range 
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from 1.0 Hz to 30.5 Hz; a frequency range in which there is sufficient signal to insure 
accurate matching and equilibration to different amplifiers.   For example, the NYU and 
University of Maryland amplifiers exhibit about 1 uV of peak-to-peak noise at 30 Hz and 
EEG beta frequency activity at 25 Hz to 30 Hz exhibits peak-to-peak amplitudes of about 
6 uV to 12 uV.   Thus, at 30 Hz there is adequate signal for amplifier matching. 

Fig. 6 – The frequency response of the University of Maryland normative database 
amplifiers.   Sine waves at 80 uV peak-to-peak were used in the calibration and at a gain 
of 5,000 = 400 mV output.   The 3 db high and low frequency cut-offs are approximately 
1 Hz and 27.5 Hz.    The amplifier filters were strong enough to insure no violation of the 
Nyquist sampling theorem at 100 Hz and 128 Hz sampling rates.   Two independent 
calibration tests are shown demonstrating high accuracy. 
 
  Content Validity of QEEG Normative Databases: Neuropsychological Correlations 
 Content validity is defined by the extent to which an empirical measurement 
reflects a specific domain of content (Nunnally, 1978).  For example, a test in arithmetic 
operations would not be content valid if the test problems focused only on addition, thus 
neglecting subtraction, multiplication and division. By the same token, a content-valid 
measure of cognitive decline following a stroke should include measures of memory 
capacity, attention and executive function, etc.  
 There are many examples of the clinical content validity of QEEG and normative 
databases in ADD, ADHD, schizophrenia, compulsive disorders, depression, epilepsy, 
TBI (Thatcher et al, 1998a; 1998b) and a wide number of clinical groupings of patients as 
reviewed by Hughes and John (1999). There are over 250 citations in the review by 
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Hughes and John and there are approximately twenty three citations to peer reviewed 
journal articles in which a normal reference database was used. Another recent review of 
QEEG normative databases and the clinical application of QEEG to psychiatric disorders 
cited 169 publications (Coburn et al, 2006).  An internet search of the National Library of 
Medicine will give citations to more QEEG and content validity peer-reviewed studies 
using a reference normal group than were included in the Hughes and John review or the 
Coburn et al (2006) review.  Finally, a recent review that emphasizes clinical correlations 
and clinical validation of a normative database is by Gordon et al (2005). 
 Figure 7 and Table III shows an example of the range of clinical correlations to 
full scale I.Q. in 373 normal individuals from 5 years to 55 years of age (2005c). 
 

Table III 
List of Correlations between Full Scale I.Q. and QEEG measures from 373 normal 

subjects age 5 years to 55 years (47). 
 

QEEG Measure Correlation Coefficient – QEEG and Full 
Scale I.Q. (Wisc-R) 

Phase Difference 0.859 
Coherence 0.842 
Phase Reset per Second 0.785 
Phase Reset Locking Interval Means 0.780 
Amplitude Asymmetry 0.691 
Phase Reset Duration Means 0.688 
Burst Amplitude Means 0.574 
Out-of-Phase Cross-Spectral Power 0.570 
Cross Spectral Power 0.485 
In-Phase Cross-Spectral Power 0.481 
Absolute Power 0.443 
Phase Reset Amplitude Means 0.372 
Peak Frequency 0.218 
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Clinical Validation of the NeuroGuide QEEG Normative Database
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Fig. 7 – Correlations between QEEG measures and full scale I.Q. (WISC-R).  N = 332 subjects from the 
University of Maryland QEEG normative database (see Table III). The highest correlations between QEEG 
and I.Q. are phase differences and coherence (47).  The x-axis are different QEEG measures and the y-axis 
is the correlation coefficient in a multivariate regression analysis with full scale I.Q. as the dependent 
variable.  Phase reset and Burst metrics are new measures which also exhibit high clinical correlations and 
clinical validation.   
 
It can be seen in figure 7 that relative high correlations with I.Q. (0.859) are achievable 
when using a normative database and multiple regression of different variable types and 
that different QEEG measures exhibit different magnitudes of correlation.  The multiple 
regression prediction of I.Q. is not intended to replace neuropsychological tests.  
However, an advantage of a QEEG normative database prediction of I.Q. is that it can be 
repeated without confounding by learning and it can be given to un-testable patients such 
as stroke, paralysis and uncooperative individuals.  Also, QEEG predictions of 
intelligence provide an insight into which aspects of neural functioning such as location 
and connectivity contribute to the prediction of intelligence thus providing a deeper 
understanding of intelligence in an individual subject.  
 
Content Validity of QEEG Normative Databases: Example for Traumatic Brain 
Injury 
 There are numerous peer reviewed journal articles showing high correlations 
between Z scores involving the UM and NYU and other normative databases over the last 
20 years (see review by Hughes and John, 1999).   It is beyond the scope of this chapter 
to attempt to review all of these studies.  Instead, we will focus on one of the many 
clinical correlation sub-groups, namely, traumatic brain injury.  The National Library of 
Medicine lists 1,672 peer reviewed journal articles on the subject of EEG and traumatic 
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brain injury.   The vast majority of these studies involved quantitative analyses and, in 
general, the scientific literature presents a consistent and common quantitative EEG 
pattern correlated with TBI.  Namely, reduced amplitude of the alpha and beta and 
gamma frequency bands of EEG (8 – 12 Hz and 13 – 25 Hz and 30  - 40 Hz) (Mas et al, 
1993; von Bierbrauer et al, 1993; Ruijs et al, 1994; Korn et al, 2005; Hellstrom-Westas, 
2005; Thompson et al, 2005; Tebano et al, 1988; Thatcher et al, 1998a; 2001a; Roche et 
al, 2004; Slewa-Younan, 2002; Slobounov et al, 2002) and changes in EEG coherence 
and phase delays in frontal and temporal relations (Thatcher et al, 1989; 1991; 1998b; 
2001; Hoffman et al, 1995; 1996a; Trudeau et al, 1998).  The reduced amplitude of EEG 
is believed to be due to a reduced number of synaptic generators and/or reduced integrity 
of the protein/lipid membranes of neurons (Thatcher et al, 1997; 1998a; 2001b).   EEG 
coherence is a measure of the amount of shared electrical activity at a particular 
frequency and is analogous to a cross-correlation coefficient.  EEG coherence is 
amplitude independent and reflects the amount of functional connectivity between distant 
EEG generators (Nunez, 1981; 1994; Thatcher et al, 1986).  EEG phase delays between 
distant regions of the cortex are mediated in part by the conduction velocity of the 
cerebral white matter which is a likely reason that EEG phase delays are often distorted 
following a traumatic brain injury (Thatcher et al, 1989; 2001a).   In general, the more 
severe the traumatic brain injury then the more deviant the QEEG measures (Thatcher et 
al, 2001a; 2001b). 
 Quantitative EEG studies of the diagnosis of TBI typically show quite high 
sensitivity and specificity, even for mild head injuries.   For example, a study of 608 mild 
TBI patients and 103 age matched control subjects demonstrated discriminant sensitivity 
= 96.59%; Specificity = 89.15%, Positive Predictive Value (PPV) = 93.6% (Average of 
tables II, III, V) and Negative Predictive Value (NPV) = 97.4% (Average of tables III, 
IV, V) in four independent cross-validations.  A similar sensitivity and specificity for 
QEEG diagnosis of TBI was published by Trudeau et al (1998) and Thatcher et al 
(2001a).  All of these studies met most of the American Academy of Neurology’s criteria 
for diagnostic medical tests of:  1- the “criteria for test abnormality was defined explicitly 
and clearly”, 2-  control groups were “different from those originally used to derive the 
test’s normal limits”, 3- “test-retest reliability was high”, 4-  the test was more sensitive 
than “routine EEG” or “neuroimaging tests” and, 5-  the study occurred in an essentially 
“blinded” design (i.e., objectively and without ability to influence or bias the results).   
 
History of 3-Dimensional Current Source Normative Databases 
 Parametric statistics that rely upon a Gaussian distribution have been successfully 
used in studies of Low Resolution Electromagnetic Tomography or LORETA (Thatcher 
et al, 2005a; 2005b; Huizenga et al, 2002; Hori and He, 2001; Waldorp et al, 2001;  
Bosch-Bayard et al, 2001; Machado et al, 2004).  Bosch-Bayard et al (2001) created a Z 
score normative database that exhibited high sensitivity and specificity using a variation 
of LORETA called VARETA.    A subsequent study by Machado et al (2004) extended 
these analyses again using VARETA.    Thatcher et al (2005a) also showed that 
LORETA current values in wide frequency bands approximate a normal distribution after 
transforms with reasonable sensitivity.    This same paper compared Z scores to non-
parametric statistical procedures and showed that Z scores were more accurate than non-
parametric statistics (2005a).   Lubar et al (2003) used non-parametric statistics in an 

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&term=%22Hellstrom%2DWestas+L%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&term=%22Hellstrom%2DWestas+L%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&term=%22Slewa%2DYounan+S%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&term=%22Slobounov+S%22%5BAuthor%5D
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experimental control study with similar levels of significance as reported by Thatcher et 
al (2005a).  Figure 8 shows an example of how a log transform can move a non-gaussian 
distribution toward a better approximation to a Gaussian when using LORETA (Thatcher 
et al, 2005a; 2005b). 
 

Fig. 8- Shows the distribution of current source densities before (left) and after (right) log10 transform 
for the delta, theta and alpha frequencies.   It can be seen that reasonable approximation to Gaussian 
was achieved by the log10 transform.  (From Thatcher et al, 2005a). 
 
 LORETA 3-dimensional current source normative databases have also been 
cross-validated and the sensitivity computed using the same methods as for the surface 
EEG (Thatcher et al, 2005b).  Figure 9 shows an example of localization accuracy of a 
LORETA normative database in the evaluation of confirmed neural pathologies. 
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Fig. 9 - Top is the EEG from a patient with a right hemisphere hematoma where the maximum 
slows waves are present in C4, P4 and O2.  The FFT power spectrum from 1 to 30 Hz and the 
corresponding Z scores of the surface EEG are shown in the right side of the EEG display.  
Bottom, are the left and right hemisphere displays of the maximal Z scores using LORETA.   It 
can be seen that only the right hemisphere has statistically significant Z values.  Planned 
comparisons and hypothesis testing based on the frequency and location of maximal deviation 
from normal on the surface EEG are confirmed by the LORETA Z score normative analysis. 
(From Thatcher et al, 2005b). 
 
 All of these studies demonstrated that when proper statistical standards are 
applied to EEG measures, whether they are surface EEG or 3-dimensional source 
localization, then high cross-validation accuracy can be achieved.   Recently, Hoffman 
(2006) confirmed that high accuracy can be achieved using a LORETA Z score 
normative database to evaluate patient’s with confirmed pathologies (e.g., left temporal 
lobe epilepsy and focal brain damage) using the University of Maryland normative 
database (Thatcher et al, 2003) and the University of Tennessee normative database 
(Lubar et al, 2003). 
 
History of 3-Dimenional Source Correlation Normative Databases 
 Thatcher et al (1994), Thatcher (1995) and Hoechstetter et al (2004) used a 
multiple dipole source solution for scalp EEG electrical potentials and then used 
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coherence to compute the correlation between the 3-dimensional current sources and 
demonstrated changes in the correlation between current sources related to different 
tasks.    Pascual-Marqui et al (2001) used low resolution electromagnetic tomography 
(LORETA) to compute current sources and then used a Pearson Product correlation 
coefficient to explore differences in source correlations between a normal control group 
and a group of schizophrenic patients.    Recently, high statistical standards were applied 
to LORETA 3-dimenional source correlations in a QEEG normative database (Thatcher 
et al, 2007a).   All of these studies revealed interesting and reproducible relations 
between current sources and network connectivity that provide a deeper understanding of 
the surface EEG dynamics.   

The same statistical standards as enumerated previously were applied to the 
LORETA source correlation normative database, i.e., peer reviewed publication, gaussian 
approximation, removal of artifact, high reliability and cross-validation.   The LORETA 
normative database studies prove that nearly any measure can be used in a normative 
database as long as the appropriate statistical and scientific standards are met. 

 
History of Real-Time Z-Score Normative Databases 
 As mentioned above, many different normative databases can be constructed and 
validated as long as the basic scientific standards of gaussianity, cross-validation, 
amplifier matching and peer reviewed publications are met.   A recent example of a new 
application of a normative database is the use of complex demodulation as a Joint-Time-
Frequency-Analysis (JTFA) for the purposes of real-time biofeedback (Thatcher, 1998a; 
1998b; 2000a; 2000b; Thatcher et al, 1987; 2003).   This method has recently been 
implemented in EEG biofeedback systems and used to compute statistical Z scores in 
real-time.   Complex demodulation is an analytic technique that multiples a time series by 
a sine wave and a cosine wave and then applies a low pass filter (Granger et al, 1964; 
Otnes and Enochson, 1977; Thatcher et al, 2007b).  This results in mapping of the time 
series to the unit circle or “complex plane” whereby instantaneous power and 
instantaneous phase differences and coherence are computed.    Unlike the Fourier 
transform which depends on windowing and integration over an interval of time, complex 
demodulation computes the instantaneous power and phase at each time point and thus an 
instantaneous Z score necessarily includes the within subject variance of instantaneous 
electrical activity as well as the between subject variance for subjects of a given age.  The 
summation of instantaneous Z scores is Gaussian distributed and has high cross-
validation (Thatcher et al, 1987; 2007), however, the individual time point by time point 
Z score is always smaller than the summation due to within subject variance.   The use of 
within subject variance results in a more “conservative” estimate of deviation from 
normal solely for the purposes of instantaneous biofeedback methods.   A standard FFT 
normative database analysis should first be computed in order to identify the electrode 
locations and EEG features that are most deviant from normal and that can be linked to 
the patient’s symptoms and complaints.   Linking a subjects symptoms and complaints, 
e.g., PTSD, Depression, Schizophrenia, TBI, etc. to functional localization of the brain is 
an important objective of those who use a normative database.   Similar to a blood bank 
analysis, the list of deviant or normal measures are given to the clinician as one test 
among many that are used to help render a diagnosis.   Linking de-regulation of neural 
activity in localized regions of the brain to known functional localization, for example, 
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left parietal lobe and dyslexia; right frontal and depression; cingulate gyrus and attention 
deficit; occipital lobes and vision problems, etc. are important to make by a trained 
clinician.    Textbooks on functional localization in neurology and psychiatry are 
available to aid the clinician in learning about the link between a patient’s symptoms and 
different brain regions (Heilman and Valenstein, 1993; Brazis et al, 2007).    A link of the 
anatomical locations and patterns of a patients deviant Z scores is important in order to 
derive clinical meaning from the QEEG.    

Once a QEEG normative database analysis is completed, then one can use a Z 
score biofeedback program to train patient’s to move their instantaneous Z scores toward 
zero or the norm.  The absolute value and range of the instantaneous Z scores while 
smaller than those obtained using the offline QEEG normative database are nonetheless 
valid and capable of being minimized toward zero.  An advantage of a Z score 
biofeedback program is simplification by reducing diverse measures to a single metric, 
i.e., the metric of a Z score.  Thus, there is greater standardization and less guess work 
about whether to reinforce or suppress coherence or phase differences or power, etc. at a 
particular location and particular frequency band. 
 Figure 10 shows the number of subjects per year in the normative EEG lifespan 
database, N = 625, that spans the age range from 2 months to 82 years of age.  It can be 
seen that the largest number of subjects are in the younger ages (e.g., 1 to 14 years, N = 
470) when the EEG is changing most rapidly.  A proportionately smaller number of 
subjects represents the adult age range from 14 to 82 years (N = 155).    In order to 
increase the time resolution of age, sliding averages were used for age stratification of the 
instantaneous Z scores for purposes of EEG biofeedback.  Two year means were 
computed using a sliding average with 6 month overlap of subjects.   This produced a 
more stable and higher age resolution normative database and a total of 21 different age 
groups.   The 21 age groups and age ranges and number of subjects per age group is 
shown in the bar graph in figure 10. 
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Fig. 10 - The number of subjects per age group in the Z score Lifespan EEG reference normative database. 
The database is a “life-span” database with the two months of age being the youngest subject and 82.3 
years of age being the oldest subject. Two year means were computed using a sliding average with 6 month 
overlap of subjects.   This produced a more stable and higher age resolution normative database and a total 
of 21 different age groups.   The 21 age groups and age ranges and number of subjects per age group is 
shown in the bar graph (Adapted from Thatcher et al, 2003). 

 
Active Tasks vs Eyes Closed and Eyes Open QEEG Databases 
  An active task refers to the recording of EEG and/or evoked potentials (EPs) 
while a subject performs some kind of perceptual or cognitive task.  Many EEG and EP 
and event related potential (ERP) studies have reported reproducible changes in brain 
dynamics which are task dependent.  Such studies are important for understanding 
normal and pathological brain processes responsible for perceptual and cognitive 
function.  In contrast, an eyes closed or eyes open EEG state involves an alert subject 
simply sitting quietly and not moving.   The eyes closed and/or eyes open conditions are 
commonly used as reference normative EEG databases because of the simplicity and 
relative uniformity of EEG recording conditions.  Such databases can be compared across 
laboratories and populations with relatively high reliability.  Active tasks, on the other 
hand, are dependent on the intensity of stimuli, the back ground noise of the room, the 
distance between the subject and the stimuli, the subject’s understanding of the task 
instructions, the subject’s motivation, etc.  These are very difficult to control across 
experimenters or across clinics for the purposes of constructing a “reference” normative 
EEG database.   

One of the most carefully constructed active task normative database is by Brain 
Resources, Inc. in Australia (Gordon et al, 2005).   The BRC database does require 
replication of specific task conditions using a Neuroscan, Inc. EEG amplifier system.   
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The relative sensitivity and specificity of resting eyes open and eyes closed EEG versus 
an active task normative database has not been published to our knowledge.    Another 
well constructed and tested active task normative database is the go no-go task developed 
by Russian scientists (Kropotov et al 2005) with medium to high sensitivity and accuracy 
in the evaluation of attention deficits and other disorders.   We were unable to find any 
peer reviewed journal articles of EEG databases produced by Dr. Kropotov and therefore 
there is no information on the sensitivity, cross-validation, amplifier matching and other 
standards for EEG databases. 
 It should be kept in mind that the alert eyes closed EEG state is very much an 
active state, e.g., there is still about 20% glucose metabolism of the whole body occurring 
in the brain of an eyes closed subject (Herscovitch, 1994) (Raichle, 2002).   During the 
eyes closed state, there is dynamic circulation of neural activity in connected cortical, 
reticular and thalamo-cortical loops (Thatcher and John, 1977; Nunez, 1995).   The 
allocation of neural resource is simply different from when the subject is directing his/her 
attention to an experimentally controlled situation.  Active tasks are very important 
because they reflect the switching and dynamic allocation of neural resource which also 
has clinical importance.   However, a scientifically sound and stable resting EEG 
normative database can enhance and also facilitate the understanding of the underlying 
neural dynamics and clinical condition of a patient during an active task.  For example, 
comparison to a resting baseline normative database during different active task 
conditions may help reveal anatomical localization of neural processes and network 
dynamics without the need for a comparison to an exactly matching active task. 
 
Summary of Normative Database Validation and Sensitivity Tests 
 Figure 11 is a summary and overview of the procedures that are used to eliminate 
artifact, maximize reliability, approximate Gaussian distributions, cross-validate and 
compute clinical correlations as a standard set of procedures and sequences to make 
normative database creation more easy.   
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Fig. 11- Illustration of the steps involved in developing a normative QEEG database.  The left is 
the start of the process with data acquisition, amplifier matching, artifact rejection and quality 
control.  Approximation to a Gaussian is followed by cross-validation and then finally clinical 
correlations.   
 
Figure 11 is an illustration of a step-by-step procedure by which any normative EEG 
database can be validated and sensitivities calculated. The left side of figure 11 is the 
edited and artifact clean and reliable digital EEG time series which may be re-referenced 
or re-montaged, which is then analyzed in either the time domain or the frequency 
domain.  
 The selected normal subjects are grouped by age with a sufficiently large sample 
size. The means and standard deviations of the EEG time series and/or frequency domain 
analyses are computed for each age group. Transforms are applied to approximate a 
Gaussian distribution of the EEG measures that comprise the means. Once approximation 
to Gaussian is completed, Z-scores are computed for each subject in the database and 
leave one out Gaussian cross-Validation is computed in order to arrive at optimum 
Gaussian cross-validation sensitivity. Finally the Gaussian validated norms are subjected 
to content and predictive validation procedures such as correlation with 
neuropsychological test scores and intelligence, etc. and also discriminant analyses and 
neural networks and outcome statistics, etc. The content validations are with respect to 
clinical measures such as intelligence, neuropsychological test scores, school 
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achievement and other clinical measures. The predictive validations are with respect to 
the discriminative, statistical or neural network clinical classification accuracy. Both 
parametric and non-parametric statistics are used to determine the content and predictive 
validity of a normative EEG database. 
 
Gold Standard Check List for a Normative QEEG Database. 
 Table IV is a “Gold Standard” check list that summarizes the minimal standards 
of QEEG Normative databases that were discussed previously.   Those clinicians 
interested in using a QEEG normative database are encouraged to enter a check for each 
of the standards that a given database has met.   The more standards that are met then the 
better. 
    Table IV 
  List of “Gold Standards” by which to judge  
                         QEEG Normative databases 
 
 Standards   Yes   No 
1 Amplifier Matching    
2 Peer reviewed publications   
3 Artifact Rejection   
4 Test Re-Test Reliability   
5 Inclusion/exclusion criteria   
6 Adequate Sample size per age group   
7 Approximation to a Gaussian   
8 Cross-Validation   
9 Clinical Correlation   
10 FDA Registered   
 
Problems in combining Sub-Standard QEEG Databases with scientifically 
acceptable databases 
 Often an EEG data sample from a patient is sent to a laboratory or QEEG service, 
and the data is compared to multiple databases including sub-standard databases.   As 
expected, the results are often conflicting and contradictory and confusing.    There is an 
assumption that somehow multiple comparisons to multiple databases is better than 
comparing a patient’s EEG to a single well published database that has met high 
statistical and scientific standards.  This assumption is wrong and potentially dangerous 
to unsuspecting patients and clinicians who are provided with multiple comparisons.    If 
a patient or a clinician receives multiple database comparisons involving unmatched 
amplifier characteristics then they should ask the provider of the normative database for 
the methods of amplifier equilibration and for a list of the scientific standards of the 
normative databases.  It is the responsibility of users of normative databases to know the 
scientific standards of the database that they are comparing their patient’s to and to 
provide informed consent to patients in situations where the patient’s EEG samples are 
compared to a non peer-reviewed database and/or unknown number of subjects per year 
database and/or unknown inclusion/exclusion criteria database and/or no statistical 
validation test database and/or a non-FDA registered database, etc.    State law and the 
FDA and IRBs require wording in an informed consent form that is clear and 
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unambiguous in which the patient is informed that their EEG data will be compared to an 
unpublished or otherwise unknown QEEG normative database.  Hopefully the “Gold 
Standards” check list in Table IV will help in this process. 
 
Future Standardization of QEEG Normative Databases 
 The post Newtonian period of European history (1685 – 1850s) is marked by an 
emphasis on standards and rules as an outgrowth of Newtonian mathematics in the 1600s.   
It was recognized that standards were a prerequisite for the future industrial revolution 
involving mass production and efficient engineering and growth of new knowledge.   A 
similar need for standardization of QEEG normative databases is present today.    
Amplifier equilibration and standardization has long been an elusive goal as mentioned 
previously.   However, new technologies are available that provide for simple and 
inexpensive standardization of EEG amplifiers for purposes of comparison.    

In the future the essential standard will be to equate the microvolt measurement of 
the electrical energies of the human brain recorded at different frequencies from different 
amplifiers using accepted statistical tests and standards of validation and verification as 
listed in rows 2 to 10 in Table IV.     
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