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Opinion
Glossary

Electroencephalography (EEG): a technique that measures voltage changes at

scalp level stemming from electrical currents inside the brain. The voltage

changes are thought to reflect an addition of extracellular postsynaptic

potentials (EPSP), the changes in voltage outside populations of neurons.

Event-related potential (ERP; time-domain EEG averaging): an increase or

decrease in the EEG signal time-locked to the occurrence of an event. Signals

are averaged in the time-domain over multiple experimental trials containing

the same event to increase the signal-to-noise ratio and improve the

distinctness of the ERP.

Feedback-related negativity (FRN): an ERP in the EEG signal 200-300 msec after

the presentation of (performance) feedback. The peak of the FRN is relatively

more negative after negative feedback than after positive feedback.

Frequency band: comprises oscillations within a certain frequency range. The

most commonly identified bands in neurocognitive processes are the delta

band (2-4 Hz), theta band (4-8 Hz), alpha band (8-12 Hz), beta band (15-30 Hz)

and gamma band (> 30 Hz), but precise definitions vary.

Magnetoencephalography (MEG): a technique that measures magnetic fields

outside the scalp induced by electrical currents in the brain. Magnetic fields are

thought to reflect summation of intracellular currents. Because magnetic fields

are orthogonal to the direction of current flow, the same brain process will

cause changes in EEG and MEG signals at different scalp locations.

Oscillation: rhythmic signal fluctuation with a sinusoidal shape.

Oscillation frequency: the number of oscillation cycles per second. The unit of

measurement is called hertz (Hz). Raw EEG and MEG signals can be

deconvolved into numerous oscillations with different frequencies.

Oscillation phase: the angle of the oscillation at a specific time point. Because

oscillations have a continuous, sinusoidal shape, phases are circular with a

higher (top of the wave) and lower (trough of the wave) limit. Synchronization

of oscillatory phases across neural networks is thought to reflect functional

connectivity between groups of neurons.

Oscillation power: the amplitude of the oscillation or the peak deviation of the

wave from its center. Oscillatory power is thought to represent the magnitude
Understanding the neurophysiological mechanisms of
learning is important for both fundamental and clinical
neuroscience. We present a neurophysiologically in-
spired framework for understanding cortical mecha-
nisms of feedback-guided learning. This framework is
based on dynamic changes in systems-level oscillatory
synchronization, reflecting changes in synaptic plasticity
between stimulus-processing and motor areas that are
modulated in a top-down fashion by different areas of
the prefrontal cortex. We make new and testable pre-
dictions for how large-scale cortical networks support
learning from feedback. Testing these predictions may
provide new insights into the basic mechanisms under-
lying learning and how these mechanisms may be im-
paired in clinical disorders in which feedback learning is
compromised.

Understanding feedback-guided learning
Learning to adapt behavior according to changes in the
environment is a fundamental ability seen even in animals
not typically thought of as being intelligent, such as slugs
[1]. And yet, learning from feedback is a hallmark of
human social and emotional development, and impair-
ments in learning are implicated in some of the most
vexing societal ailments, including substance abuse and
schizophrenia [2–5]. A better understanding of the neural
circuits and mechanisms underlying feedback learning has
the potential both to bridge neuroscience research across a
range of species and theoretical and methodological frame-
works, and to help gain insight into brain disorders.

Feedback processing and learning are fast neurocogni-
tive processes that likely rely on integrating information
across multiple spatially disparate brain systems. In the
past decade, over 300 papers have been published about
the electrophysiological processes underlying feedback-
guided learning (PubMed search for the terms ‘feedback
negativity’ or ‘EEG feedback learning’, October 2011).
Nevertheless, as we discuss below, significant gaps remain
in our knowledge concerning how large-scale brain net-
works interact to support learning from feedback.

We argue that deeper insights into the neural mecha-
nisms of learning require a new and more physiologically
inspired perspective that is centered on large-scale brain
networks and how they interact through synchronized
electrophysiological oscillations (see Glossary). We first
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describe briefly previous work in the field and then present
our framework and ensuing hypotheses that are amenable
to confirmation or falsification using magnetoencephalog-
raphy (MEG) and electroencephalography (EEG). M/EEG
have a temporal resolution that matches that of neurocog-
nitive feedback processing and learning (milliseconds), and
allow investigation of complex oscillatory dynamics that
are putative neurobiological mechanisms for neural infor-
mation coordination and integration [6].

Major themes in research on the electrophysiological
mechanisms of feedback-guided learning in humans
Although a comprehensive review of this literature would
be useful to the field, it is outside the scope of the present
article. We outline instead the major themes that this
literature has addressed in order to contextualize our
new perspective.

Basic EEG characteristics of feedback processing. Sev-
eral articles in the field characterize the experimental
of activation in a group of neurons.

Time-frequency representation: the deconvolved EEG/MEG signal presented

as changes in oscillatory dynamics per frequency over time.
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conditions that modulate the amplitude of the feedback-
related negativity (FRN), a time-domain trial-averaged
event-related potential (ERP) component (Figure 1). Be-
cause the FRN has been hypothesized to reflect a reward
prediction error [7], researchers have investigated whether
FRN amplitude correlates with feedback magnitude (e.g.,
big vs. small reward) or the probability of negative feed-
back. Unfortunately, the literature is not entirely consis-
tent: whereas several studies provide empirical support for
the FRN reflecting the magnitude or probability of feed-
back [8–18], several other studies fail to support this
conclusion [19–24], suggesting instead that the FRN
reflects a binary ‘good-bad’ evaluation [19].

It is possible that this discrepancy is due to differences
across studies in the significance of feedback for learning.
Although many studies do not explicitly test for a link
between the FRN and learning, there is evidence that the
FRN reflects the evaluation of the significance of feedback
for future behavior [7,16,25–30] or the relevance of feed-
back for task performance [28,31,32].
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Figure 1. Typical experimental design and results from a feedback learning study. (a) In 

particular stimulus. Stimuli are often probabilistic (lower panel) such that correct ans

learning focus on the feedback-related negativity (FRN, also sometimes called a feed

deflection in the time-domain averaged EEG potential, time-locked to visual onset of per

to positive feedback. These ERPs differentiate positive from negative feedback starting 

(c)). The rhythmic activity seen after negative feedback (note the peaks and troughs of th

that negative (positive) feedback elicits increased theta-band (beta-band) activity compa

(without spatial filtering for ERPs and with spatial filtering for time-frequency plots).
FRN magnitude also correlates with personality con-
structs, such as extraversion [33], and is modulated by social
factors (e.g., watching a friend win/lose money) [34,35].
These and related studies show that the FRN has external
validity and correlates with real-world behaviors.

The FRN as a marker for aging or pathological conditions.
FRN magnitude decreases as a function of age [36–39] and is
modulated by depression, substance abuse, attention deficit
hyperactivity disorder and schizophrenia [40–43]. These
studies suggest that the FRN might be a useful biological
marker for disease risk, severity, and treatment success.

Neural generators and mechanisms of the FRN. Al-
though the brain generators of scalp EEG activity cannot
be unambiguously localized, consensus from dipole and
distributed source modeling studies that provide mathe-
matical estimations of the putative generators of scalp-
recorded EEG activity suggest that the anterior cingulate
and overlying medial frontal cortex are the major contri-
butors to the FRN [25,44–47], along with right prefrontal
[48] and posterior cingulate [25,45,46].
200 400 600 800

 

Negative FB
Positive FB
Neg FB - Pos FB

Key:

Negative FB

Positive FB

Neg FB - Pos FB

Time (ms)

(c)

0 600 800 1000 FB 200 400 600 800 1000
2 
3 
4 
5 
7 
9 

13
18
24
33

e FB Neg FB - Pos FB

0

µV

-5

5

-1

2
dB

TRENDS in Cognitive Sciences 

most studies, subjects learn which response option leads to positive feedback for a

wers do not always lead to positive feedback. (b) Most EEG studies on feedback

back error-related negativity or medial frontal negativity). The FRN is a positive

formance feedback (FB), and is relatively less positive following negative compared

at around 200 ms, and the difference is maximal over midfrontal scalp sites (panel

e red line) can be quantified through time-frequency decomposition, which shows

red to positive (negative) feedback (panel (d)). Adapted, with permission, from [54]
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In terms of neurophysiological mechanisms, growing
evidence suggests that the FRN may be the time-domain
reflection of oscillatory activity [47,49–54]. Oscillations in
EEG data reflect rhythmic fluctuations of populations of
neurons and may be a fundamental mechanism for orga-
nizing and coordinating information processing [55–57]. As
discussed below, conceptualizing the feedback-related
EEG response not as an ERP component with one peak
but rather as a temporal-spatial-frequency landscape of
oscillatory dynamics has two significant advantages [6]: it
allows results to be linked to known neurophysiological
phenomena, including population-level neuronal activity,
and also allows for in-depth data analyses aimed at unco-
vering how the prefrontal cortex interacts with other brain
systems to support learning.

Why a fresh perspective on electrophysiological
mechanisms of feedback learning is needed
Theoretical considerations. The dominant theoretical mod-
el for understanding the FRN (and the response-locked
error-related negativity, a theoretically related ERP that is
time-locked to response errors) was proposed in 2002 by
Holroyd and Coles [7]. This model predicts that the FRN
reflects the impact of phasic (in)activation of the midbrain
dopamine system, which reflects a reward prediction error
[58], on anterior cingulate neurons. The appeal of this
account stems from its simple, computationally-based
and neurobiologically inspired framework. Our consider-
ations below are not meant to disprove this theory but
rather to highlight the need for a new perspective on
feedback learning that incorporates the past decade’s
developments in neuroscience.

Several key predictions of the Holroyd and Coles model
have not received empirical confirmation or are difficult to
test in humans. The neural generators of the FRN appear
to be distributed throughout frontal cortex [25,44–48] in-
stead of being confined to a focal source in the anterior
cingulate cortex. Empirical studies provide mixed support
for the prediction that the FRN reflects a reward prediction
error, as discussed earlier. There is no strong evidence
regarding whether the FRN reflects phasic dopamine sig-
naling because measuring and manipulating the human
dopamine system in a precise way is difficult: positron
emission tomography (PET) with dopamine agents is not
readily accessible; dopaminergic pharmacological manip-
ulations have complex and poorly understood effects on
several neurochemical systems that depend on the dosage,
the subject’s metabolism, hormonal state, etc.; and reduc-
ing dopamine medication, for example in Parkinson’s
patients, induces other symptoms ranging from motor
impairments to depression and impulsivity [59,60]. We
do not suggest that dopamine is unrelated to the FRN –

indeed, pharmacological [61] and genetic [53] studies dem-
onstrate correlations between overall dopamine system
activity and FRN magnitude. Rather, we argue that the
hypothesis that the FRN reflects phasic changes in mid-
brain dopamine activity that directly modulate anterior
cingulate neurons is difficult to falsify or confirm.

Furthermore, by restricting analyses to a fixed-latency
ERP component from one electrode, most studies on feed-
back learning address a putative mechanism by which the
560
need for learning is signaled, but these studies do not
address the putative mechanisms by which that learning
takes place nor do they address the nature of representa-
tions that are being learned (although some studies have
examined learning-related changes in stimulus processing
[62]). In our framework below, we address both the mech-
anisms by which the need for learning is signaled and the
neural network-level manifestations of learning and task-
specific representations.

Methodological considerations. Most EEG studies on
feedback learning report peak amplitudes of the FRN from
a single electrode (as in Figure 1a). This fixed-latency FRN
amplitude measure is useful as an index of general activa-
tion of a cognitive learning system, but there are two main
limitations of studying the FRN (and ERPs more general-
ly). First, measuring the amplitude of the ERP deflection at
a fixed point in time is an impoverished treatment of the
rich and complex nature of EEG data [6]. As discussed
below, potentially task-relevant dynamics may be lost
during ERP averaging. Second, for the same reason, null
results (e.g., non-statistically different FRNs across condi-
tions) can be difficult to interpret because of potential
condition-discriminating EEG dynamics not present in
the ERPs.

M/EEG data provide a millisecond-precision window
into the rich, complex and multi-dimensional temporal
landscape of cortical electrical dynamics that unfold over
time, space and frequency, and are, therefore, useful meth-
odologies for linking neural dynamics to real-world cogni-
tive, emotional, perceptual and social behaviors [6].
Conceptualizing M/EEG as comprising oscillatory dynam-
ics is amenable to characterizing complex local and long-
range interactions, interpreting findings in the context of
neurophysiological mechanisms and linking results in
humans to those in invasive recording studies in animals.

There are two main advantages of time-frequency de-
composition. First, these analyses are amenable to neuro-
physiological interpretation because the neuronal
mechanisms and interactions that produce field potential
oscillations are well understood [57]. In contrast, it is less
clear what neuronal mechanisms would produce trial-av-
eraged ERPs that do not result from oscillatory activity,
particularly ERPs such as the FRN that contain rhythmi-
cally alternative positive and negative peaks. (Whether
ERPs in general reflect oscillatory processes is an ongoing
debate that is outside the scope of the present article [63–

65].) Second, orthogonal to the previous point and of more
practical relevance, time-frequency decomposition allows a
more in-depth investigation of the EEG dynamics under-
lying behavior. Many potentially informative phenomena
of task-relevant neural dynamics – including synchroniza-
tion, cross-frequency coupling and activities that overlap in
time but are separable in frequency – are difficult or
impossible to extract from ERPs. It has been argued that,
because a Fourier transform will necessarily account for all
activity (given sufficient frequency sampling), non-oscil-
latory activity will be present in time-frequency represen-
tations either as a broad-band or a band-limited response
[65]. However, regardless of whether activity in a particu-
lar frequency band is termed oscillatory or band-limited,
the fact remains that time-frequency decomposition can



Box 1. Different measures of connectivity with M/EEG data

� Phase synchronization or phase-locking refers to power-indepen-

dent consistency of phase values across electrodes. Phase-based

measures are highly sensitive to temporal information, which is

well suited for tightly temporally linked processes but may be

suboptimal when the precise temporal interactions are not known

or may be jittered across trials.

� Spectral coherence measures frequency band-specific coupling

and combines both power and phase information.

� Power-power correlations involve correlating average frequency

band-specific power across trials, and can be interpreted as

reflecting slower state changes rather than temporally precise

interactions. This method is suitable if a precise temporal

relationship between activities in two areas is not known.

� Spectral Granger causality measures the increase in variance in

one electrode that can be accounted for by considering variance in

another electrode previously in time (note that Granger causality

is a measure of directed synchronization and does not imply or

require a true causal relationship). The main advantage of

Granger causality (and related measures such as partial directed

coherence) is the ability to make empirically buttressed assertions

about the direction of information flow across brain regions.

� Cross-frequency coupling refers to a relationship between

activities in different frequency bands, which can be measured

at the same electrode or over different electrodes [70]. This may

indicate that activity in larger-scale networks (coordinated by

relatively slower oscillations) is regulating activity in more

localized networks (coordinated by relatively faster oscillations)

[70].

This is not an exhaustive list of connectivity measures; many

other connectivity measures exist and might be usefully applied

(e.g., mutual information, phase-lag index [99], multi-variate state-

space measures [100]).
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provide insights into neurocognitive processes that go well
beyond what can be learned from ERP averaging.

A new perspective: large-scale, task-specific networks
based on oscillatory synchronization
Learning can be conceptualized as experience-dependent
changes in synaptic weights between neural populations
representing stimuli or contexts and those representing
the actions that help achieve a goal in response to those
stimuli [66]. These changes in plasticity can be measured
at the mesoscopic level with M/EEG as changes in inter-
regional oscillatory synchronization [56,67]. Note that in-
ter-regional synchronization does not require or imply
monosynaptic connections. The issue of whether inter-
regional synchronization necessarily implies synaptic plas-
ticity is addressed in a subsequent section.

Measuring changes in synaptic plasticity as changes in
oscillatory synchronization leads to the first core prediction
of our framework: learning stimulus-response mappings
should be associated with monotonically corresponding
changes in synchronization between the stimulus-proces-
sing and motor areas involved in the mapping [68]. This
means that increased learning should be reflected in in-
creased synchronization, whereas unlearning (for in-
stance, in an extinction or reversal paradigm) should be
associated with decreased synchronization. For example,
as subjects learn to associate a blue circle with a left-hand
response and a red circle with a right-hand response,
synchronization should increase between posterior color-
processing areas and the right (left) motor cortex for blue
(red) circles respectively. These synchrony-learning corre-
lations should be manifested both within-subjects across
trials or blocks of trials, and across subjects or groups, such
that individuals who learn better should display stronger
synchronization.

Inter-regional coupling may be manifested as phase
synchronization [69], spectral coherence, power-power cor-
relations or cross-frequency coupling [70] (see below and
Box 1) and, because synchronization relies on the precise
temporal interactions between regions, it does not require
increases in oscillation power at any localized brain region.
The precise frequency ranges in which learning-related
inter-regional synchronization occur may depend on stim-
ulus modality, processing demands and response map-
pings, although the gamma band may have a general
role in cross-modal sensory associations [71].

Although we do not make specific predictions regarding
the frequency ranges of learning-related synchronization,
we do make predictions for the frequency bands in which
feedback and its implications are evaluated. Several re-
search groups have observed a frequency band dissociation
for feedback valence, such that negative feedback elicits
midfrontal theta-band activity whereas positive feedback
elicits midfrontal beta-band activity [47,49–54,72]. This
frequency band dissociation suggests that different neuro-
physiological mechanisms underlie learning from negative
versus positive feedback and leads to the second core
prediction of our framework: learning-related changes in
inter-regional synchronization should be modulated in a
top-down fashion by frontal theta when learning from
negative feedback and by frontal beta when learning from
positive feedback. Although these theta and beta effects
share a somewhat similar midfrontal topographical distri-
bution, they might have distinct neural generators: as
mentioned earlier, the negative feedback theta effect
appears to emerge from medial prefrontal and posterior
cingulate cortices [25,44–48]. Less is known about the
positive feedback beta effect, but orbitofrontal cortex is a
likely candidate [52] because it has consistently been
implicated in reward and positive feedback [73], and elec-
trical fields from neurons along the ventral surface of the
orbitofrontal cortex may propagate to the scalp.

Thus, we predict that feedback learning occurs through
a prefrontally mediated modulation of synaptic weights
that functionally link stimulus-processing and motor-gen-
erating cortical regions, which can be measured through
oscillatory synchronization (Box 2). This fairly simple the-
oretical framework (i) makes novel predictions that are
testable in a variety of species using EEG, MEG, intracra-
nial EEG, and single- and multi-cellular recordings; (ii)
may help understand learning impairments in some clini-
cal populations, e.g., substance abuse; (iii) is also amenable
to development and yields auxiliary predictions (Box 2).

Changes in local activity (oscillatory power) versus
changes in inter-regional synchronization over time and
trials. Changes in local activity, measured through fre-
quency band-specific activity recorded from specific elec-
trodes or brain regions via source imaging, should conform
to predictions made previously [7,16]: with learning, feed-
back-locked activity should decrease and response-locked
activity should increase, reflecting a shift from learning via
561



Box 2. New predictions for the neural mechanisms of feedback learning

Core predictions (Figure Ia):

� Learning/unlearning is associated with increases/decreases in

synchronization between the stimulus and/or motor areas for which

associations are formed.

� These changes in synchronization are driven by a top-down

influence of prefrontal cortical regions in a frequency band-specific

manner:

� Learning from negative feedback engages midfrontal theta-band

oscillations.

� Learning from positive feedback engages ventromedial beta-band

oscillations.

� These changes in prefrontal cortex-modulated inter-area synchroni-

zation are reflected within subjects (i.e., changes during learning) and

across subjects (stronger synchronization in individuals who learn

better).

Auxiliary predictions (Figure Ib; note that this is not an exhaustive

list):

� Dorsolateral PFC regions should become engaged if working

memory is required.

� Frontopolar regions should become involved if exploration or

abstract hypothesis testing is required [96].

� Amygdala should become involved if the learning involves social/

emotional associations [97].

� Additional anterior cingulate cortex recruitment might be involved

when learning involves uncertainty or dynamically changing

learning rates [98].
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Figure I. Graphical illustration of new core (panel (a)) and auxiliary (panel (b)) predictions from our framework for cortical oscillatory correlates of feedback-guided learning.

Note that ‘stim’ (stimulus representation) is here drawn towards the occipital pole but would reflect activity in any sensory area representing the task-relevant stimulus.

MFC=medial frontal cortex; mot=motor areas; OFC=orbitofrontal cortex; LPFC=lateral prefrontal cortex; FPC=frontopolar cortex; amyg=amygdala; bs=brainstem.
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exogenous to learning via endogenous feedback processing
and consistent with temporal-difference learning mecha-
nisms [7].

The novel predictions of our framework involve synchro-
nization. Our model makes specific predictions about how
synchronization changes over time within a trial and
across trials of an experimental block. Generally, we as-
sume that changes in synchronization elicited by perfor-
mance feedback reflect the mechanism of learning – the
562
cascade of synaptic, cellular, and systems-level restructur-
ing based on principles of Hebbian learning – and we
assume that changes in synchronization elicited by stimu-
lus onset reflect the consequences of learning – the result of
Hebbian learning such that the activation of one node (e.g.,
representing the stimulus) activates other nodes within
the network (e.g., the associated response or other stimuli
with which the stimulus has been paired). Other predic-
tions for how changes in synchronization occur over time
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Figure 2. Graphical illustration of predicted temporal dynamics of local activity and inter-regional synchrony with learning. (a) Activity within feedback, stimulus and response

processing areas is expected to increase only during the related event, but synchrony between stimulus processing areas and the representation of the correct response is

expected to increase both as a result of feedback (mechanism of learning) and after stimulus presentation (manifestation of learning). This increase in synchrony after feedback

presentation between stimulus processing areas and the representation of the correct response is expected to decrease over trials as the association is learned, whereas the

increase in synchrony with the representation of the correct (incorrect) response after stimulus presentation is expected to increase (decrease). (b) Three-dimensional renderings

of predicted synchronization over trials and time within a trial. Changes in synchrony as a result of learning are expected to be larger and faster (over trials) after negative than

after positive feedback. This illustration assumes valid feedback; probabilistic feedback would modulate local landscape features.
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and across trials, separately for positive vs. negative feed-
back and for the correct and incorrect response, are illus-
trated in Figure 2.

If changes in synaptic plasticity lead to synchronization,
does synchronization imply changes in synaptic plasticity?
Unfortunately, the answer is no. Changes in task-related
inter-regional synchronization can also result from changes
in attention or motivation [74–76], which likely change over
the course of an experiment along with learning.

Inferring synaptic plasticity from inter-regional syn-
chronization should therefore rely on additional consider-
ations to rule out alternative hypotheses. Here we discuss
three criteria that would help dissociate synchrony due to
changes in synaptic weights from synchrony due to
changes in attention or task engagement. First, changes
in synchronization should occur dynamically within blocks
of trials (see Figure 2), whereas effects due to attention
should decline steadily over the course of the experiment.
One could also record subjective ratings of attention/arous-
al/motivation/engagement or use inter-trial-interval
posterior alpha power as an indirect measure of attention.
Second, presentation of the learned stimulus after the
learning session ends (and without requiring a response)
should elicit synchronization patterns observed during
learning (in this case, electromyographic activity should
be recorded to ensure that subjects are not making covert
responses with the stimulus-associated hand). Third, this
‘reactivation’ of the synchronization pattern should occur
in the absence of attention (e.g., if the stimuli are masked
to preclude conscious awareness of its presentation or if
attention is overtly directed elsewhere). These patterns of
results would be difficult to attribute to task-related, but
plasticity- or learning-independent, mechanisms.

How inter-regional synchronization can be measured in
the human brain. There are several different measures of
synchronization, each with its own interpretation and
advantages/limitations. Box 1 provides a brief overview
of several different methods along with their interpreta-
tions. Measuring inter-regional synchronization is hin-
dered by volume conduction – the spread of electrical
563
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fields from one brain source to multiple electrodes/sensors.
It is important to demonstrate that changes in synchroni-
zation between two electrodes do not simply reflect the
spread of one neural source to multiple electrodes. Spatial
filtering techniques such as surface Laplacian [77], inde-
pendent components analysis [78] and distributed source
imaging [79] help minimize the contribution of volume
conduction, but may not entirely eliminate the problem.
Changes in synchronization in the absence of power or
uncorrelated with power, and non-zero phase lag synchro-
nization help distinguish true synchronization from vol-
ume conduction. In short, there are several methods for
quantifying the time- and frequency-varying interactions
between brain regions. Each method has its advantages
and limitations, and important potential methodological
concerns must be taken into consideration for each method.

Neurocomputational mechanisms. Feedback learning in
humans is likely supported by a prediction error-like
mechanism. Indeed, models based on Rescorla-Wagner
principles have been successful at capturing some aspects
of behavior and EEG activity during learning tasks
[7,25,29,80]. However, informal post-experiment debrief-
ings consistently reveal that subjects generate and test
sometimes very complex hypotheses, even when instructed
that the task contains no complex higher-order patterns. A
simple example is that negative feedback can be a strong
positive prediction error (i.e., an early predictor of a re-
ward) if subjects test the hypothesis that response ‘1’ is not
associated with stimulus ‘A’. Furthermore, subjects occa-
sionally spontaneously report hypotheses about complex
trial sequences that they thought were manipulated in the
task and that guided their behavior, even when explicitly
instructed that trial sequences are randomized. These and
related observations suggest that relying on simplistic
computational mechanisms may preclude a more in-depth
understanding of the neurocognitive processes that sup-
port learning. This is not to suggest that computational
modeling cannot inform mechanisms of feedback-driven
learning; rather, we think that simplistic computational
models may provide a misleading interpretational frame-
work, and more accurate models should account for the
higher-level hypothesis testing and strategizing processes
in which subjects regularly engage.

The role of neurochemistry. Undoubtedly, neuromodu-
lators play a role in feedback learning [81]. For example,
dopamine facilitates long-term potentiation/depression
[82] and regulates stability vs. flexibility of representations
[83]; norepinepherine modulates system-wide arousal/at-
tention and mood [84]; and acetylecholine is involved in
neural plasticity and modulating neural oscillation char-
acteristics [85]. In the present framework, neurochemicals,
including dopamine, have a peripheral rather than central
role, and interpreting results within this framework does
not require invocation of difficult-to-test neurochemical
causal mechanisms.

Subcortical regions. It may seem a surprising omission
to exclude the basal ganglia/striatal system from our mod-
el. Clearly the basal ganglia play a role in learning and
action selection [86,87]. However, their contribution to
synchronization-based manifestations of learning is more
difficult to test for two reasons: deep brain activity is not
564
easily measured from the scalp [88] and (2) some hypothe-
sized roles of the basal ganglia are difficult to test in
humans because they involve differentiating neurons by
synaptic properties (e.g., go vs. nogo pathways) or in small
nuclei (e.g., internal vs. external segment of the globus
pallidus). However, rare opportunities to record directly
from subcortical regions in humans (e.g., for deep-brain-
stimulation) support the role of synchronization between
the medial frontal cortex and ventral striatum for reward
learning and anticipation [89,90], and between the medial
frontal cortex and subthalamic nucleus for conflict-based
behavior adaptation [91]. In healthy humans, combining
EEG and functional magnetic resonance imaging (fMRI)
may help by uncovering correlations between scalp EEG
and hemodynamic activity [92], although it is unclear what
the predicted hemodynamic correlate of changes in neural
synchronization without changes in overall activity is.

Potential clinical relevance. Several brain disorders are
associated with impairments in learning as well as oscil-
latory dynamics, such as schizophrenia [93], substance
abuse [94] and autism spectrum disorders [95]. The pres-
ent framework may, therefore, be useful for studying these
disorders. Following confirmation that network synchroni-
zation-level disruptions are linked to learning impair-
ments in clinical disorders, an important avenue of
research would be to test whether changes in learning-
related synchronization might be used as a neural marker
of treatment success.

Concluding remarks
Conceptualizing feedback-driven learning as changes in
inter-regional oscillatory synchronization driven by top-
down prefrontal dynamics allows novel and falsifiable
hypotheses that incorporate recent developments in un-
derstanding systems-level network interactions. We hope
that this framework will facilitate new discoveries about
neurophysiological mechanisms of feedback-guided learn-
ing that will be relevant for basic neuroscience, and how
these systems go awry in pathologies.
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