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Schizophrenia is increasingly conceived as a disorder of brain network
organization or dysconnectivity syndrome. Functional MRI (fMRI)
networks in schizophrenia have been characterized by abnormally
random topology. We tested the hypothesis that network random-
ization is an endophenotype of schizophrenia and therefore evident
also in nonpsychotic relatives of patients. Head movement-corrected,
resting-state fMRI data were acquired from 25 patients with schizo-
phrenia, 25 first-degree relatives of patients, and 29 healthy volun-
teers. Graphs were used to model functional connectivity as a set
of edges between regional nodes. We estimated the topological
efficiency, clustering, degree distribution, resilience, and connection
distance (in millimeters) of each functional network. The schizo-
phrenic group demonstrated significant randomization of global
network metrics (reduced clustering, greater efficiency), a shift in the
degree distribution to a more homogeneous form (fewer hubs), a
shift in the distance distribution (proportionally more long-distance
edges), and greater resilience to targeted attack on network hubs.
The networks of the relatives also demonstrated abnormal random-
ization and resilience compared with healthy volunteers, but they
were typically less topologically abnormal than the patients’ net-
works and did not have abnormal connection distances. We conclude
that schizophrenia is associated with replicable and convergent evi-
dence for functional network randomization, and a similar topological
profile was evident also in nonpsychotic relatives, suggesting that this
is a systems-level endophenotype or marker of familial risk. We spec-
ulate that the greater resilience of brain networks may confer some
fitness advantages on nonpsychotic relatives that could explain per-
sistence of this endophenotype in the population.
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Schizophrenia is increasingly conceived as a brain dysconnec-
tivity syndrome or disorder of brain network organization (1–4).

Various methods have been used to demonstrate abnormal struc-
tural or functional connectivity between brain regions in patients
with schizophrenia. Specifically, several recent studies have used
graph theory to measure the topological pattern of connections (or
edges) between regional nodes in large-scale networks derived from
neuroimaging data (5–12).
The results to date of graph theoretical studies of schizophrenia

are not entirely consistent, but there is some convergence around
the concept of topological randomization (9, 13). For example,
human brain networks (and many other complex, real-life networks)
generally have a small-world topology that can be understood as
intermediate between the regular, highly clustered organization of a
lattice and the globally efficient organization of a random graph.
Three independent functional MRI (fMRI) studies have shown that
the functional brain networks of patients with schizophrenia are
relatively shifted toward the random end of this small-world

spectrum, i.e., they have lower clustering coefficient and greater
efficiency than healthy brain networks (5, 7, 8). Previous studies
have also reported schizophrenia-related disruptions in the
normal community structure of fMRI networks, such as in-
creased connectivity between modules (5), and abnormal rich
clubs (14), in patients with schizophrenia. There is also some
evidence that the physical (geometric) distance of edges tends
to be relatively increased in structural and functional brain graphs
of schizophrenia (6, 15).
There were three main objectives of this study. The first was

to assess the replicability of the prior topological and geometric
markers of network randomization in an independent sample of
patients with schizophrenia. Specifically, we wanted to test the
hypothesis that the network abnormalities most frequently
reported in US or European studies of schizophrenia would also
be evident in a Chinese population. Second, we tested the hy-
pothesis that brain network randomization in patients with
schizophrenia would be associated with greater resilience to
targeted attack on network hubs in silico. Third, we aimed to
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Using network analysis of resting-state functional MRI data,
we demonstrate that significant randomization of global net-
work metrics, and greater resilience to targeted attack on
network hubs, was replicably demonstrable in Chinese patients
with schizophrenia, and was also demonstrated for the first
time in their nonpsychotic first-degree relatives. These results
support the hypothesis that functional networks are abnor-
mally randomized and resilient in schizophrenia and indicate
that network randomization/resilience may be an endophe-
notype, or marker of familial risk, for schizophrenia. We sug-
gest that the greater randomization of the brain network
endophenotype of schizophrenia may confer advantages in
terms of greater resilience to pathological attack that may
explain the selection and persistence of risk genes for schizo-
phrenia in the general population.
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test the hypothesis that brain network randomization/resilience
is an endophenotype, or marker of familial risk for schizophrenia,
that is expected to be abnormal in nonpsychotic first-degree rel-
atives of patients as well as in the patients themselves.
We therefore analyzed resting-state fMRI data from 25 patients

with schizophrenia (Sz), 25 first-degree relatives (Rel), and 29
healthy volunteers (HV). For each individual image, we con-
structed a functional brain graph and estimated some key to-
pological and geometric markers of randomization (clustering
coefficient, efficiency, degree distribution, distance distribution),
and resilience to targeted attack and random failure. We pre-
dicted that functional brain networks would be more randomized
and resilient in both Sz and Rel, compared with HV.

Results
Functional Connectivity. At each frequency interval defined by a
wavelet decomposition of the fMRI time series, the rank or-
dering of group mean functional connectivity HV > Rel > Sz was
statistically significant [Jonckheere–Terpstra (J-T) test, P < 0.05,
false discovery rate (FDR) corrected]. Post hoc t tests demon-
strated that mean wavelet correlation, or functional connectivity,
was significantly reduced in Sz compared with HV at all wavelet
scales (Fig. 1). For consistency with many prior studies of resting-
state fMRI connectivity, we focused on the frequency interval
0.05–0.1 Hz, approximately corresponding here to wavelet scale
2. However, we note that broadly similar results were obtained
by analysis of other wavelet scales (Fig. S1).

Global Network Topology. There were significant between-group
differences in all global topological metrics. For the clustering
coefficient, the rank ordering HV > Rel > Sz was significant (J-T
test; P < 0.05, FDR corrected; Fig. 2A), and post hoc t tests
demonstrated significantly decreased clustering coefficient in peo-
ple with schizophrenia, and their unaffected relatives, compared
with healthy volunteers. In contrast, for the global efficiency, the
rank ordering Sz > Rel > HV was statistically significant and post
hoc t tests demonstrated significantly increased global efficiency in
Sz, and Rel, compared with HV (Fig. 2B). Small worldness was
generally evident over a range of graph connection densities—the

so-called small-world regime corresponding to 1–24% connection
density. There were significant differences in small worldness be-
tween groups: HV > Rel > Sz; and post hoc t tests demonstrated
significant reductions in Sz compared with HV; small worldness was
not abnormal in Rel (Fig. 2C).

Degree Distributions. The best-fitting form of the degree distri-
bution was generally an exponentially truncated power law.
However, there were significant differences between groups in
terms of mean degree distribution parameters over the small-
world regime: rank ordering Sz = Rel > HV for the power law
exponent, α (J-T test, uncorrected P = 0.026), but rank ordering
HV > Rel = Sz for the exponential cutoff, β (J-T test, un-
corrected P = 0.029). Post hoc t tests demonstrated that the
power law exponent α was significantly increased but the expo-
nential cutoff β was significantly reduced in Sz and/or Rel,
compared with HV. As shown graphically in Fig. 2D, this shift in
degree distribution parameters indicates that the probability of

Fig. 1. Global functional connectivity strength at each of four wavelet scales
(corresponding to frequency intervals) and over all frequencies (broadband) for
Sz (red), Rel (green), and HV (blue). Connectivity strength (wavelet correlation)
was corrected for nonsignificant age differences between groups by regression.
Red asterisks denote significant rank-ordered differences in connectivity
strength: Sz < Rel < HV (J-T test, P < 0.05, FDR corrected). Crosses denote values
located more than 1.5× the interquartile range from the median.

Fig. 2. Topological and geometric measures of functional brain networks in
Sz (red), Rel (green), and HV (blue); confidence intervals on the curves rep-
resent ±1 SD. (A) Clustering coefficient (y axis) as a function of connection
density (x axis). (B) Global efficiency (y axis) as a function of connection density
(x axis). (C) Small worldness (y axis) as a function of connection density (x axis).
(D) Cumulative degree distributions were best fit in each group by an expo-
nentially truncated power law. The fitted curves with median value of the
power law exponent α in each group are plotted; (Inset) boxplots represent
the within-group distributions and between-group differences in the two
parameters: α and the exponential cutoff, β; cross indicates significant be-
tween-group differences (t test, uncorrected P < 0.05). (E ) The probability
distributions of connection distance in three groups (data averaged over
subjects in each group) show a greater proportion of long-distance connec-
tions, and reduced proportion of middistance connections, in schizophrenia.
(F) The mean connection distance (x axis) as a function of connection density
(y axis) shows a significant trend in rank ordering of the three groups, Sz >
Rel = HV, where the network has longer connection distance in Sz, but not
in Rel. The significant differences between groups are denoted by asterisks
(J-T test, P < 0.05, FDR corrected).
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high degree hubs is abnormally reduced in both people with
schizophrenia and their relatives.

Connection Distance. The distribution of connection distance was
somewhat similar in all groups (Kolmogorov–Smirnov test, pair-
wise comparison, P > 0.05) (Fig. 2E). However, the mean con-
nection distance over a range of connection densities (1–24%) was
different between groups: The rank ordering Sz > Rel = HV was
significant (J-T test, P < 0.05, FDR corrected, Fig. 2F), and post
hoc t tests demonstrated significantly longer connection distance
in Sz than in HV (uncorrected P < 0.05).

Resilience. Under random failure, the global efficiency of the
networks typically remained high (about 90% of maximum
efficiency), even after more than 50% of nodes had been
deleted. In other words, brain networks were highly resilient to
random failure (Fig. 3 A and C). However, the global efficiency of
all networks was degraded more severely by targeted attack (Fig. 3
B and D). For example, after deletion of only 10% of the highest-
degree hub nodes, the global efficiency of brain networks was
reduced below 90% of maximum (Fig. 3D). For random failure,
there were no significant between-group differences (J-T test, P >
0.05, FDR corrected). However, for targeted attack, the rank
order Sz = Rel > HV was significant (J-T test, P < 0.05, FDR
corrected), and post hoc t tests demonstrated that resilience to
targeted attack was increased in both Sz and Rel compared with
HV (Fig. 3).

Nodal Topology. There were significant between-group differences
in clustering and efficiency at a nodal level of analysis that were
consistent with the results for global topology (J-T test, P < 0.05,

FDR corrected). As illustrated in Fig. 4A, for nodal clustering, the
rank ordering was usually HV > Rel > Sz, whereas, for nodal
efficiency, the rank ordering was usually Sz > Rel > HV. Nodes
demonstrating significant rank ordering of clustering HV > Rel >
Sz were located mainly in bilateral precentral and postcentral
cortex, and lateral and medial occipital cortex. These are areas of
functionally specialized cortex (motor, somatosensory, and visual)
that are known to be highly clustered in healthy functional brain
networks (16). Nodes demonstrating significant rank ordering of
efficiency Sz > Rel > HV were localized in dorsolateral prefrontal
cortex, anterior and posterior cingulate cortex, inferior parietal
cortex, superior temporal cortex, hippocampus, and caudate nu-
cleus. All of these areas have been previously implicated in the
pathophysiology of schizophrenia (11).
Schizophrenia-related differences in nodal topology were also

related to the nodal topology of the normal connectome. Spe-
cifically, the nodes that showed the greatest reduction of clus-
tering in schizophrenia tended to have the highest clustering in
the HV group (r = -0.78, P < 0.001), whereas nodes that showed
the greatest increase of efficiency in schizophrenia tended to
have the lowest efficiency in the HV groups (r = -0.65, P < 0.001)
(Fig. 4B). Similar results were also found in Rel; see Figs. S2 and
S3 and Tables S1 and S2.

Correlational Analysis of Network Metrics and Clinical Variables. The
network metrics were moderately correlated with each other
(Table S3). Over all participants in the study, connectivity
strength was negatively correlated with physical (Euclidean)
distance of functional connections (r = −0.30) and with three
topological measures of network integration: global efficiency
(r = −0.40), resilience to targeted attack (r = −0.65), and the

Fig. 3. Network resilience to target attack and random failure for Sz (red),
Rel (green), and HV (blue); confidence intervals on the curves represent
±1 SD. (A) Network resilience against random failure (y axis) as a function
of connection density (x axis). (B) Network resilience against targeted attack
(y axis) as a function of connection density (x axis). The boxplots illustrate the
network resilience at connection density of 10%; the significant differences
between the three groups are denoted by red asterisks (J-T test, P < 0.05,
FDR corrected); and cross denotes post hoc t tests with uncorrected P < 0.05.
(C and D) The curves show how the global efficiency (percentage of maxi-
mum efficiency; y axis) of networks deteriorates as the proportion of nodes
deleted by in silico attack (x axis) is increased, at connection density of 10%.
(C) Random failure causes less rapid deterioration of global efficiency in all
networks. (D) Targeted attack on network hubs causes relatively rapid de-
terioration in network efficiency. Sz and Rel have greater resilience to tar-
geted attack than healthy volunteers.

Fig. 4. Nodal topological differences between groups. (A) Cortical surface maps
show significant between-group differences in rank order of nodal clustering
(Left) and nodal efficiency (Right) of functional brain networks (J-T trend test, P <
0.05, FDR corrected). Nodes where the rank order is Sz < Rel < HV are colored in
blue; nodes where the rank order is Sz > Rel > HV are colored in red. The cortical
surface maps were generated by BrainNet viewer software (www.nitrc.org/
projects/bnv/) (52). (B) The mean nodal topology in the HV group (x axis) versus
the difference between HV and Sz groups in mean nodal topology (y axis) are
plotted for nodal clustering (Left) and nodal efficiency (Right). The colored points
highlight nodes demonstrating significant between-group differences in nodal
topology corresponding to the colored areas of the cortical surface maps (A). The
straight lines fitted to these data have significantly nonzero negative slope, in-
dicating that abnormally increased efficiency tends to be located in nodes with
normally low efficiency whereas abnormally decreased clustering is located in
nodes with normally high clustering.
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power law exponent of a truncated power law degree distribution
(r = −0.58). In other words, low strength connections tended to
traverse long distances and to be important for both (i) the
emergence of high-degree hubs, conferring vulnerability to tar-
geted attack, and (ii) short characteristic path length or high
global efficiency. On the other hand, connectivity strength was
positively correlated with clustering coefficient (r = 0.69) and the
exponential cutoff parameter of the degree distribution (r = 0.56),
meaning that high strength connections tended to be important
both for a more homogeneous degree distribution and for more
clustered or segregated topology. Repeating this correlational
analysis group by group, we found that the same relationships be-
tween connectivity strength, resilience, and power law degree dis-
tribution parameter were consistently and significantly expressed in
each group. The relationship between strength and distance was not
significant in any individual group, which may reflect the fact that
functional connectivity strength decays as a nonlinear function of
distance and correlation is a measure of linear association (16). The
normal relationship between strength and global efficiency was not
expressed by Sz or Rel; see Table S3 for details.
In the Sz group only, we explored the relationships between all

network metrics and questionnaire measures of psychotic symptom
severity [the Positive and Negative Syndrome Scale (PANSS) global
and subscale scores] and a measure of current antipsychotic drug
exposure (chlorpromazine equivalent dose, milligrams per day).
The global psychotic symptom score was negatively correlated with
connection distance (r = −0.47); there were no other significant
associations between clinical variables and network measures. An-
tipsychotic drug exposure was negatively correlated with both global
efficiency (r = −0.53) and small worldness (r = −0.64), but these
effects were not significant after exclusion of a single outlier with
very high antipsychotic drug exposure; see Table S3 and Fig. S4
for details.

Discussion
It is encouraging that many of these graph theoretical results on
an independent Chinese sample are consistent with prior func-
tional network studies of schizophrenia in US or European
populations, suggesting that these are internationally replicable
diagnostic markers. The global and nodal topological changes of
increased global efficiency and decreased clustering coefficient
are consistent with prior reports of “subtle randomization” of
brain networks in schizophrenia (5–8). Randomization is also
consistent with the degree distribution being less fat tailed, and
the distance distribution being more weighted toward long-dis-
tance connections, in schizophrenia (6).
In this context, it is empirically more novel, although concep-

tually not surprising, that schizophrenia should also be associated
with greater than normal resilience of functional networks to
targeted attack. Random graphs, as shown in Fig. 3, maintain high
levels of global efficiency even after a large percentage of nodes
have been deleted, whether randomly or by targeted attack on the
higher-degree hubs. Complex networks, like the brain, the Inter-
net, and many other nonrandom systems, are more vulnerable to
targeted attack because they have more heterogeneous degree
distributions than a random graph, and the deletion of high-
degree hubs consequently has a more serious effect on the global
integrity of the network (17). Thus, it is predictable that functional
networks in schizophrenia, being topologically more random than
normal, and with a less heterogeneous degree distribution, should
be more resilient to targeted attack, as we have shown.
We interpret this result by supposing that topological resilience

may be advantageous, to some extent, simply because it protects
the integrity of the network from pathological attack. It seems
increasingly clear from neuroimaging studies of brain network
topology in neurological and psychiatric disorders that “lesions” of
gray matter measured by MRI tend to be concentrated in high-
degree hub regions of the brain (18, 19). This pattern of results is

compatible with the hypothesis that hubs are preferentially vul-
nerable to pathogenesis and/or that damaged hubs are especially
likely to be symptomatic. There is also evidence from pathogenic
modeling of neurodegenerative processes on imaging networks
that Alzheimer’s disease and related disorders can be under-
stood to progress by propagation between nodes, which will
naturally expose the hubs of the brain to the degenerative
process at a relatively early stage in its propagation through
the connectome (20, 21).
Given this prior evidence that brain disorders preferentially

target high-degree hub nodes, it seems reasonable to expect that
brain networks with greater resilience to computational attack on
their hubs might in real life confer some survival advantage in the
face of pathological attack. This advantage might exert a positive
selection pressure on genes favoring network randomization,
which might in turn explain the persistence in the population of
alleles that, at “high dose” or in adverse combinations, are asso-
ciated with increased incidence of a disabling neurodevelopmental
disorder like schizophrenia. However, it is possible that there is
some other factor that drives emergence of this systems-level
endophenotype, and its hypothetically greater resilience to path-
ological attack is immaterial to its selection. One testable hypothesis
generated by these reflections is that the first-degree relatives of
patients with schizophrenia might have reduced incidence or
severity of brain disorders, such as Alzheimer’s disease, that
are associated with gray matter volume deficits in structural
network hubs.
A conceptually related previously unidentified result of this

study is that it is the first, to our knowledge, to demonstrate that
topological abnormalities of functional networks are also evident
in the nonpsychotic, first-degree relatives of patients. Compared
with HV, we have shown that Rel had significantly reduced clus-
tering coefficient, increased efficiency, less fat-tailed degree dis-
tributions, and greater resilience to targeted attack. In other
words, fMRI networks in Rel also demonstrated an abnormal shift
to greater randomization of network topology. These results sug-
gest that fMRI network randomization is a marker of genetic
or shared environmental risk for disorder, rather than simply a
marker of schizophrenia per se. Equally, the abnormal topological
profile in the fMRI networks of Rel discounts possible in-
terpretations of the abnormalities in the Sz group in terms of their
exposure to antipsychotic medication or other factors specifically
related to a clinical diagnosis of schizophrenia. Given the high
heritability of functional connectivity and functional network
markers (22, 23), and the high heritability of schizophrenia, it is
plausible that the abnormalities of network randomization dem-
onstrated here represent the effects of genetic variants conferring
risk for schizophrenia. However, it would require a twin study to
rule out the alternative possible interpretation that network ran-
domization is indicative of shared environmental effects.
Two questions in particular arise when thinking about these

putative network endophenotypes of schizophrenia. First, what is
different about the network configuration of patients compared
with their relatives that could explain why the relatives are not
psychotic? We do not have a complete answer to this question, but
it is notable that Rel did not converge in all respects on the pattern
of network abnormalities described in Sz. For example, Sz had
significantly reduced small worldness, and greater proportion of
long-distance connections, whereas Rel were not significantly
different from normal on these measures. On many other topo-
logical measures (such as efficiency and resilience to targeted at-
tack), it was also notable that the average scores of Rel were
intermediate between the scores of Sz and HV. In short, the
randomization endophenotype may be more topologically extreme
and/or more biologically expensive in patients compared with their
first-degree relatives.
A second key question concerns the potentially beneficial

aspects of network randomization. It has been shown that higher-IQ
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individuals tend to have more-efficient structural and functional
networks (24, 25), that more-difficult cognitive tasks demand
more-integrated or efficient functional network topology (26,
27), and that a pharmacological challenge (acute nicotine re-
placement in abstinent cigarette smokers) that enhanced atten-
tion also increased efficiency and connection distance of fMRI
networks (28). These observations are consistent with earlier
theoretical claims that higher-order conscious processing de-
pends on access to a “global workspace” rather than a segre-
gated, modular architecture (29–31). This would imply that the
greater efficiency of more random network organization in
patients with schizophrenia should be associated with superior
performance on higher-order cognitive tasks. However, in fact,
this is not the case for schizophrenia, which is typically asso-
ciated with moderate to severe impairments in executive
function and working memory. The normal link between
greater network efficiency and superior cognitive performance
seems to be disrupted in schizophrenia, for reasons that are
not yet known.
There are several limitations to this work. Sz were receiving

antipsychotic drugs that can affect functional connectivity and
network topology (32, 33). However, this cannot explain the
network abnormalities in Rel, as they were unmedicated (except
one who was taking antidepressants). A more fundamental lim-
itation is that the edges of fMRI networks represent above-
threshold correlations between time series, but the underlying
biological substrate of this functional connectivity is not well
characterized. We used Euclidean distance between nodes as a
simple measure of the physical distance of edges in the functional
brain graphs. Because functional connectivity does not securely
imply a direct anatomical connection (34), and because anatomical
connections are typically not linear, the Euclidean distance will
generally be an underestimate of the true anatomical (axonal) dis-
tance between functionally connected areas of the brain. We have
assumed that this bias applies consistently between groups and
therefore does not substantively distort the rank order of different
groups in terms of connection distance. Developments in human
diffusion-weighted imaging may provide more-accurate estimates of
the anatomical connection distance subtending functional connec-
tivity in future. The construction of brain graphs from any mo-
dality of neuroimaging data entails multiple methodological
choices about preprocessing and analysis that could influence the
pattern of results. We have addressed this issue by testing that
key results are robust to contemporary standards for correction
of head motion (35–37) and to reasonable variation in other
analysis steps, including choice of parcellation, wavelet scale, and
connection density.

Methods
Sample. We recruited three groups of participants: patients with schizophrenia,
Sz (n = 35); the first-degree relatives of patients with schizophrenia, Rel (n = 39);
and healthy volunteers, HV (n = 36). Sz and Rel were recruited from the Psy-
chiatric Outpatient Department of Lo-Sheng Sanatorium and Hospital in Taipei,
Taiwan. Sz were diagnosed according to the Diagnostic and Statistical Manual
of Mental Disorders-IV criteria (38) for schizophrenia, and completed PANSS
(39) for evaluation of psychotic symptom severity. Rel and HV were cognitively
normal with no history of neurological or psychiatric disorders, and had no
cognitive complaints, confirmed by Mini-International Neuropsychiatric In-
terview (40). After elimination of subjects due to uncontrolled headmotion and
to optimize matching of the remaining groups for age and sex, the final sample
included 25 Sz, 25 Rel, and 29 HV subjects; see SI Text, Table S4, and Fig. S5 for
details. There were no significant differences between groups in terms of sex,
age, handedness (41), or mean or maximum head displacement. All Sz were
medicated: 9 Sz were taking typical antipsychotics, of which 2 were also taking
antidepressants; 14 Sz were taking atypical antipsychotics, of which 2 were also
taking antidepressants; and 2 Sz were taking antidepressants only. The average
antipsychotic dose was 408 mg/d in chlorpromazine equivalents. One Rel had
a history of mild depressive disorder and was taking antidepressants. The
remaining participants were not taking any medication at the time of study.
The study was approved by the Institutional Review Board of Taichung

Veterans General Hospital, Taichung, Taiwan. All participants gave informed
consent in writing. Further details on sample recruitment and assessment
are provided in SI Text.

Magnetic Resonance Imaging. Resting-state fMRI data were acquired using
a 3T MR system (Siemens Magnetom Tim Trio) at National Yang-Ming
University, Taipei, Taiwan, using a gradient echo-planar imaging sequence
sensitive to blood oxygenation level-dependent contrast; see SI Text for
detailed imaging protocols.

fMRI Preprocessing. The preprocessing procedures for the fMRI datasets in
native space included slice-timing correction; motion correction to the first
volume with rigid-body alignment; obliquity transform to the structural MR
image; spatial smoothing within functional mask with a 6-mm at full-width at
half-maximum Gaussian kernel; intensity normalization to a whole brain me-
dian of 1,000 (35, 37); wavelet despike (removing signal transients related to
small amplitude (<1 mm) head movements) (37); and multiple regression of
motion parameters and their first derivatives, and the global average white
matter (WM) and cerebrospinal fluid (CSF) signals, from the fMRI time series
data. The effects of transient micromovements on functional connectivity
were carefully assessed and controlled in individuals and groups; see refs. 35–
37 and SI Text. Preprocessed data were spatially normalized to Montreal
Neurological Institute (MNI) stereotactic standard space by an affine trans-
formation and interpolated to 3.4-mm cubic voxels. The gray matter areas
were parcellated into 638 regions of approximately similar size (26), and gray
matter regions were excluded if the signal quality in regions was not
satisfactory in all participants, resulting in a set of 585 motion-corrected,
regional mean fMRI time series for each participant; see SI Text and Fig. S6
for details. Preprocessing, spatial normalization, and parcellation pro-
cedures were implemented with Analysis of Functional NeuroImages (AFNI)
(42) and FMRIB Software Library (FSL v5.02, fsl.fmrib.ox.ac.uk/fsl/fslwiki/).
The BrainWavelet Toolbox was used for correction of transient head move-
ments (37) (www.brainwavelet.org).

Functional Connectivity Estimation. We used the maximal overlap discrete
wavelet transformwith a Daubechies 4wavelet to decompose each fMRI time
series into four scales or frequency intervals: scale 1, 0.10–0.20 Hz; scale 2,
0.05–0.10 Hz; scale 3, 0.025–0.05 Hz; and scale 4, 0.0125–0.025 Hz. We esti-
mated the pairwise wavelet correlations between the wavelet coefficients at
each scale for each of 183,921 possible pairs of regions.

Graph Theoretical Analysis of Network Connections. The absolute wavelet
correlation matrices were used to construct binary undirected graphs. The
minimum spanning tree that connected all 585 regional nodes with 584 edges
was first defined, and then additional edges were added in decreasing order of
wavelet correlation to construct a series of graphs for each individual with
connection density in the range 1–100% in increments of 1% (5, 6). The fol-
lowing global topological parameters were estimated for each graph at each
connection density: global efficiency, a measure of network integration; clus-
tering coefficient, a measure of network segregation; and small worldness, the
ratio of normalized clustering to normalized efficiency. The degree, clustering,
and efficiency were also estimated for each regional node. All of these
metrics have been frequently used in prior graph theoretical studies of
fMRI data (43–47) and are described in more detail in SI Text. They were es-
timated using MATLAB code in the Brain Connectivity Toolbox (see ref. 47;
www.brain-connectivity-toolbox.net).

Degree Distribution, Network Connection Distance, and Resilience. The proba-
bility distribution of degree (K) over all nodes in the network (the degree dis-
tribution) was best fit to an exponentially truncated power law PðKÞ=Kα−1eK=β,
which has two parameters, the power law exponent, α, and the exponential
cutoff, β (16); see SI Text for details. The connection distance was simply defined as
the Euclidean distance between the centroids of each pair of regional nodes
connected by an edge in MNI stereotactic standard space (6, 16). To test the
resilience of each network, we simulated attacks on the network by removal
of nodes either in descending order of their degree (targeted attack on
hubs) or in random order (random failure). We thus incrementally increased
the percentage of deleted nodes from 0 to 100% in increments of 1%, and
recalculated the global efficiency of the remaining network after deletion
of each node (17). The area under the curve of normalized global efficiency
(scaled to maximum) versus the percentage of deleted nodes was defined as
a summary measure of the resilience of a network (48).
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Nodal Topology. Efficiency and clustering were estimated for each regional
node in the series of networks with connection density in the range 1–24%, in
increments of 1%. To explore the relationship between abnormal nodal
topology in patients and normative nodal topology, the difference of nodal
topology between Sz and HV groups at each node was correlated with the
corresponding nodal topology metric in the HV group only (49).

Statistical Analysis and Hypothesis Testing. To assess the ordered between-
group differences in the measures of functional connectivity and functional
network organization, we used the J-T test (50) to test the hypotheses that
metrics were ranked in the order Sz > Rel > HV or HV > Rel > Sz. If this test
indicated significant differences between the medians of all three groups,
we conducted additional pairwise t tests to compare network metrics be-
tween Sz versus HV groups and Rel versus HV groups. Two significance levels

of stringency were set for statistical testing: uncorrected P < 0.05 and FDR
correction at the 5% level (51).
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