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Abstract

In recent years, the field of network science has enabled researchers to represent the highly complex interactions in the
brain in an approachable yet quantitative manner. One exciting finding since the advent of brain network research was that
the brain network can withstand extensive damage, even to highly connected regions. However, these highly connected
nodes may not be the most critical regions of the brain network, and it is unclear how the network dynamics are impacted
by removal of these key nodes. This work seeks to further investigate the resilience of the human functional brain network.
Network attack experiments were conducted on voxel-wise functional brain networks and region-of-interest (ROI) networks
of 5 healthy volunteers. Networks were attacked at key nodes using several criteria for assessing node importance, and the
impact on network structure and dynamics was evaluated. The findings presented here echo previous findings that the
functional human brain network is highly resilient to targeted attacks, both in terms of network structure and dynamics.
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Introduction

Complex systems may be represented as networks by modeling

the system components as nodes and the interactions between

components as links, and graph theory methods and dynamical

simulations may then be applied to these networks in order to

understand their structure and dynamics. The human brain is an

example of such a system that can be described as a network. The

functional relationships between brain regions, typically measured

using imaging techniques such as functional magnetic resonance

imaging (fMRI), can be described as a brain network; in particular,

nodes represent various brain regions and edges represent strong

coherence among the nodes. For a review of the construction and

analysis of functional brain networks, we refer the reader to [1]

and [2].

An exciting finding since the advent of brain network research

was that the functional brain network can withstand extensive

damage, even to highly connected regions [3]. In this prior work,

regions of the brain network were systematically attacked based on

their degree, the number of links to which each region was

functionally connected. Regions having the highest degree were

eliminated and the associated changes on network topology were

evaluated. Then the next highest degree nodes were identified and

eliminated and the changes in the network topology were

recorded. This process was repeated until all nodes of the network

had been removed. This type of systematic removal is referred to

as targeted attack, where the most critical hubs are targeted for

removal. Additionally, the effect of random failure was studied by

selecting nodes for removal with uniform probability.

Achard et al. compared the resilience of brain networks to that

of two null models, random networks and scale-free networks,

since the level of robustness of these networks had been studied

previously [4]. Random networks, where the majority of nodes

have a similar number of connections (or degrees), proved to be

highly resilient to both targeted attack and random failure. Scale-

free networks, on the other hand, fragmented rapidly. This may be

because a scale-free network is highly vulnerable at a very small

number of high-degree nodes, or mega-hubs, which mediate

connections among low degree nodes constituting the majority of

the network [4]. Functional brain networks, while not as resilient

as random networks, were shown to be far more robust than scale-

free networks. It is well known that brain networks have

characteristics of small-world architecture, that is a combination

of high clustering for local specialization and low path length to

enable distributed processing [5,6,7]. Achard et al. proposed that

the resilience of the brain network was due to this small-world

architecture. Furthermore, Achard et al. observed that the

functional brain network degree distribution followed an expo-

nentially truncated power law, meaning that there are fewer mega-

hubs and a greater number of mid-degree nodes than would be

expected in a scale-free distribution. This exponentially truncated

power law distribution also likely contributed to the resilience

against targeted attacks of hubs.

However, it is possible that the highest degree nodes are not the

most critical nodes of the brain network [8]. There are many

measures of node importance, or centrality. Each centrality metric

has a different consideration for the topological properties that

make a node central, and therefore different centrality metrics may
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be more appropriate for different networks and their specific

information flow processes [9]. Furthermore, it is unclear how the

removal of these nodes may impact network dynamics in addition

to topology.

Alstott et al. have taken significant strides towards studying how

failure of nodes in the brain network may impact network

dynamics [10]. Their study involved simulating neural dynamics

on structural brain networks constructed from diffusion spectrum

imaging data. These simulated neural dynamics were used to

create functional connectivity networks. Network nodes were

eliminated based on degree, strength (weighted degree), and

betweenness centrality to study the effect on topology. The impact

was evaluated by calculating changes in global efficiency and the

size of the largest connected component. In dynamical simulations,

lesions were simulated by targeting groups of nodes centered on

anatomical locations. The impact of a particular lesion was

evaluated by simulating neural dynamics on the lesioned networks,

and noting changes in the resulting functional networks. They

found that betweenness centrality had a considerable impact on

network topology, and that the effect on network dynamics is

highly dependent on the anatomical location of the lesion.

Another study evaluated the effect of brain lesions due to stroke,

traumatic brain injury, and brain tumors on functional brain

network structure [11]. Specifically, Gratton et al. were concerned

with the impact of lesions on brain network community structure,

the topological property where network nodes tend to associate

into well connected groups. Images from healthy participants and

patients with lesions were used to create networks with approx-

imately 90 nodes, in which corresponding nodes in each

population were mapped to the same anatomical space. Each

network was partitioned into modules (communities) using New-

man’s modularity [12]. Each node was evaluated for its within-

module degree, or the number of links connecting nodes in the

same module, as well as its participation coefficient, a summary

metric of how diversely the node is connected to multiple modules.

Gratton et al. discovered that the networks of lesioned patients had

lower modularity scores when the lesions were in areas that

exhibited higher participation coefficients in normal subjects.

There was no statistical relationship between the within-module

degree of lesioned nodes and the effect on modularity. They

concluded that damage to brain regions linking multiple modules

leads to a reorganization of the network that is detrimental to the

entire network topology.

A large body of previous work on dynamics in complex

networks has been focused on artificial networks. Watts studied

global cascades in random networks due to small perturbations in

the signals embedded in the network [13]. In these networks, each

node has a state (either 1 or 0), and it may choose to change its

state based on the states of its neighboring nodes according to a

threshold rule. A cascade occurs when a few nodes switch states,

causing a large scale propagation of state-switching throughout a

large portion of the network. Watts found that as the distribution

of threshold values for state-switching was made to be more

heterogenous, the system became more prone to producing large

cascades. In a similar experiment studying cascades in coupled

map lattices, Wang and Xu noted that the size of the cascade is

highly dependent on the network structure [14]. They showed that

coupled map lattices with small-world architecture or scale-free

degree distributions are much more likely to exhibit large cascades

due to local shocks than globally coupled (fully connected) lattices.

Rubinov et al. designed a neurobiologically relevant dynamic

model consisting of a computerized network of spiking neurons

[15]. They investigated the topological factors necessary for the

emergence of self-organized criticality, marked by system dynam-

ics that are self-similar on multiple spatial and temporal scales.

They found that the presence of community structure (groups of

nodes that are tightly interconnected), low wiring cost (an

estimation of the average distance each wire traverses across the

network), and synaptic plasticity were all necessary components for

producing self-organized criticality. Tanaka et al. studied targeted

attack on networks of coupled oscillators [16]. They discovered

that the removal of low degree nodes has a large effect on the

dynamics of these networks while the removal of high degree

nodes does not. They speculate that this is due to the fact that low

degree nodes do not interact with a large number of other nodes

and therefore have the ability to sustain high levels of activity. As

such, the removal of low degree nodes has the potential to alter the

overall activity in the system to a great extent.

Despite all of the important work on the topological resilience of

functional brain networks to targeted attack, and impact on the

dynamics of artificial networks, it is still not clear how targeted

attacks impact the dynamics in functional brain networks. In this

work, we sought to expand our understanding of the resilience of

the human functional brain network, both in terms of topology

and dynamics. We conducted targeted attack experiments on

voxel-based functional brain networks and region-of-interest (ROI)

networks of 5 healthy volunteers. Networks were selectively

attacked using several node centrality metrics to determine which

centrality metric best identifies critical nodes. We measured the

resulting impact on network topology using three criteria, and

utilized two frameworks for assessing the dynamical impact.

Materials and Methods

All experiments were conducted in accordance with the ethical

standards of the Wake Forest University institutional review board

and with the Helsinki Declaration of 1975. Functional brain

networks of 5 healthy volunteers were constructed according to

[8]. For each subject, 120 fMRI full-brain volumes were acquired

over approximately 5 minutes. Images were corrected for motion,

normalized to the MNI (Montreal Neurological Institute) space,

and re-sliced to 46465 mm voxel size using SPM99 (Wellcome

Trust Centre for Neuroimaging, Longdon, UK). From these

Author Summary

Why can the brain endure numerous micro-strokes with
seemingly no detrimental impact, until one cataclysmal
stroke hinders the ability to perform essential functions
such as speech and mobility? Perhaps various small
regions or foci of the brain are highly important to
information transfer, and the loss of such highly central
foci would be severely injurious to brain function.
Identification of such foci, via modeling of the functional
brain using network theory, could lead to important
advances with regard to brain disease and stroke. In this
work, we utilized functional brain networks constructed
from human volunteers to study how removing particular
regions of the brain impacts brain network structure and
information transfer properties. We sought to determine
whether a particular measure of region importance may be
able to identify highly critical regions, and whether
targeting highly critical regions would have a more
detrimental impact than removing regions at random.
We found that, while in general targeted removal has a
larger impact on network structure and dynamics, the
human brain network is comparatively resilient against
both targeted and random removal.

Functional Brain Network Resilience
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volumes, one time series was extracted for each of the 15,996

voxels encompassing all of the gray matter of the cerebrum.

Images were corrected for physiological noise by band-pass

filtering to eliminate signal outside of the range of 0.009–

0.08 Hz [17,18], and mean time courses from the entire brain,

the deep white matter, and the ventricles were regressed from the

filtered time series. In the past, the practice of global mean

regression has been under scrutiny due to the propensity to

produce artificial deactivations, particularly in the white matter

and cerebrospinal fluid (CSF) [19]. It is important to note,

however, that failure to regress the mean signal will prevent

detection of true deactivations that are known to occur in the

brain. Additionally, the regions that are highly sensitive to these

artifacts (white matter and CSF) are not considered in the present

work. A full discussion on this topic can be found in [20].

The time series in each voxel was correlated with every other

voxel using the Pearson’s correlation coefficient. These correlation

values were then represented in a correlation matrix summarizing

the functional relationships between every pair of voxels. A

threshold was applied to the correlation matrix, above which voxel

pairs were said to be connected. This resulted in a binary

adjacency matrix where 1 indicated the presence of a link and 0

indicated the absence. The threshold was defined such that the

relationship between the number of nodes N and average number

of connections between nodes k was consistent across subjects.

Specifically, the ratio of log(N) to log(k) was the same across

subjects [21]. This threshold resulted in a link density of

approximately 0.0015, where density is the ratio of the number

of links present in the network to the number of possible links. This

density is consistent with the size-density relationship of many self-

organized networks described in [22]. Moreover, links defined by

this threshold represented correlations that are approximately 3

standard deviations above the mean. Figure 1 depicts the process

of generating the functional brain networks.

Each functional brain network was selectively attacked at the

nodes with the highest centrality. In particular, the top 5% highest

centrality nodes were removed from the network, along with any

links directly connected to those regions. After the removal of the

nodes, the respective centrality measure was recalculated and

another set of top 5% nodes were identified. This process was

repeated until all nodes in the network were removed. Four

centrality metrics were utilized, namely, degree centrality, leverage

centrality, eigenvector centrality, and betweenness centrality.

Degree centrality defines highly central nodes to be those having

a high number of links connected to that node. Leverage centrality

relates the degree of a node to that of its immediate neighbors. In

particular, nodes with higher degrees than their neighbors are

considered highly central to their local neighborhood [8].

Eigenvector centrality evaluates centrality based on the centrality

of immediately connected neighbors, and therefore a node

connected to nodes with high degree is highly central by

association [23]. Betweenness centrality defines the importance

of a node by the number of shortest paths between pairs of nodes

on which the node lies. In this way, high betweenness nodes

facilitate the exchange of information along the most efficient

trajectories [24]. Formulations for these metrics are provided in

[8]. In addition to targeted attacks, we also conducted random

attacks by iteratively removing 5% of nodes randomly at each step.

After attacking the networks, changes in the network structure

were evaluated by assessing three network characteristics: local

efficiency (Eloc), global efficiency (Eglob), and the size of the giant

component (S). Local and global efficiency are used to infer the

efficacy of information exchange through a network by studying its

topology [25]. Local efficiency quantifies the extent to which nodes

communicate with immediate neighbors and can be thought of as

an indication of regional specificity. Global efficiency quantifies

the extent to which nodes communicate with distant nodes, and

indicates the efficacy of information exchange throughout the

entire network. As nodes are removed, the network may fragment

into isolated subgraphs. The size of the giant component is defined

to be the largest connected subgraph, and may be used to indicate

the extent of fragmentation.

The impact on dynamics was evaluated using two models. The

first is an equation-based spreading activation model described in

[26]. This model injects signal into a network, and allows the

signal to spread through links and decay according to model

parameters. The equation governing the spread of activation is

given in Equation 1 below.

St~Etz 1-cð Þ St-1zaR St-1 ð1Þ

If N is the number of nodes in the network, St is an N61 vector

describing the signal at time t, Et is an N61 vector containing the

external signal injected at time t, c is the relaxation rate of the

signal (0#c#1), a is the relative amount of activity that flows from

a node to its neighbors per unit time (a.0), and R is the N6N

connectivity matrix. R was constructed by eliminating all negative

connections in the correlation matrix, setting the diagonal of the

matrix to 0, and normalizing the matrix such that each column

sums to 1. Therefore R contained only weighted (normalized)

Figure 1. Generating a functional brain network. Functional magnetic resonance imaging (fMRI) data are collected from a subject, yielding a
time series for each gray matter voxel in the cerebrum. The correlation values between each voxel are calculated to produce a correlation matrix. A
threshold is applied to the correlation matrix to create an adjacency matrix, where all values surviving the threshold are set to 1. This adjacency matrix
defines the links present in the functional brain network.
doi:10.1371/journal.pcbi.1002885.g001
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positive connections from the original correlation matrix. External

signal, E, was only present at time t = 0, where the 50 seed nodes

were set to 1, and all other nodes were 0. The seed nodes for the

external signal were randomly selected from the population of

nodes that were not deleted. The equation was iterated for 100

time steps. This spreading activation model was tested on the

original network and the networks with nodes removed, where 5%

through 80% of the nodes were removed in increments of 5%. By

examining the total activation in the system over the course of the

simulation, we evaluated the impact of removal of highly central

nodes on the ability of information to spread through the network.

Here, total activation is defined to be the sum of activity values

across all nodes in the network at a given time during the

simulation. This procedure was performed on 5 subjects.

Additionally, the impact of targeting low degree nodes was

examined in a single subject in order to further investigate the

findings in [16], where the targeted removal of low degree nodes

had a greater impact on the dynamics of a network containing

coupled oscillators than high degree nodes. For this experiment,

we removed nodes that were the top 5% through 30% highest

centrality nodes as well as the 5% through 30% lowest centrality

nodes, in increments of 5%. Seed nodes were again randomly

selected from the pool of remaining nodes in the networks.

Varying the ratio a/c results in a phase change in the spreading

activation model. When a/c is small, the total activation in the

system decays to zero over time (referred to as Phase I), but as a/c
increases, the system enters a regime where the activation builds

exponentially in a small component of the system, referred to as

Phase II [26]. We chose a= 1 and tuned gamma until the original

networks exhibited Phase II behavior, resulting in a/c= 0.96.

Changes in dynamics were also evaluated by embedding a

coarser form of each network into an agent-based model called the

agent-based brain-inspired model (ABBM) described in [27]. An

agent-based model is a collection of agents that interact with one

another by following simple rules. The rules used here were

inspired by the work of Stephen Wolfram [28], who has been a

major contributor to the study of cellular automata. In this case,

agents are represented by the nodes of the functional brain

network, and links in the network represent communication

pathways between agents. Each agent possesses a state, which can

be either on or off, and may update its state based on the states of

all connected neighbors by following one of Wolfram’s Rules. Due

to the computational demand of this model, these networks were

constructed by parcellating the brain volume of each subject into

90 anatomical regions using the AAL (automated anatomic

labeling) atlas [29]. The time series of all voxels belonging to a

particular ROI were averaged in order to create 90 ROI time

series. These time series were cross-correlated to construct a

90690 ROI correlation matrix containing positive and negative

connection weights. A threshold was applied to these networks to

preserve only strong positive or negative connections while

preventing fragmentation. Therefore, positive and negative

weighted links were present in the ROI networks. The process

of creating the ROI networks and the mechanisms underlying the

ABBM are described in full in a prior publication [27].

These ROI networks were selectively attacked by removing

10% of the nodes (9 regions) with the highest centrality, at

random, or with the lowest centrality. Slight modifications to the

centrality metrics were necessary in order to calculate these

metrics in the weighted, signed correlation matrix. Degree was

calculated as the sum of the absolute value of the weights of all

links belonging to a node. Leverage and eigenvector centrality,

which depend only on the degree of the node and its connected

neighbors, were calculated using this definition of degree. The

weighted form of betweenness was calculated on the absolute value

of the correlation matrix using the MATLAB BGL package

(http://dgleich.github.com/matlab-bgl/).

The impact on dynamics was evaluated by testing the ability of

the attacked agent-based model to solve the density classification

problem, a problem originally utilized to evaluate whether a one-

dimensional cellular automaton (CA) could support computation

[30]. A CA can be thought of as belonging to a class of agent-

based models, where agents are spatially embedded as adjacent

cells. The goal of the density classification problem is to find a rule

that can determine whether greater than half of the cells in a CA

are initially in the on state. If the majority of cells are on (i.e.

density .50%), then by the final iteration of the CA, all cells

should be in the on state. Otherwise, all cells should be turned off.

The system should be able to do this from any random initial

configuration of node states. The key is that each node receives

input from only a few other nodes in the network. Each node must

decide based on this limited information whether to turn on or off

in the next time step, resulting in network-wide cooperation

without the luxury of network-wide communication. The rule and

model parameters that must be used in order to perform this task

are identified using a search optimization technique known as

genetic algorithms. We have demonstrated that the ABBM is able

to perform the density classification task with a high level of

accuracy across a range of densities, while null models with

randomized connectivity are not successful, indicating that the

topology of the brain network is amenable to computation. Here

we wished to determine how targeted removal of high centrality

nodes would impact performance on this task.

Table 1 contains a summary of treatments of the functional

brain networks used in each procedure for evaluating network

structure and dynamics.

Results

Topological analyses
The quantities used to analyze the topological changes to the

functional brain networks were the size of the giant component,

global efficiency, and local efficiency. Each time the highest

centrality nodes were identified and eliminated from the network,

these three measures were recalculated and plotted along a curve.

Figure 2 contains these curves, averaged across the networks of 5

subjects. The size of the giant component, S, was normalized to the

size of the giant component of the original network (S0). As the

network nodes were selectively removed, the size of the giant

component decreased, but did not show a dramatic reduction until

nearly 40% of the nodes were eliminated from the network,

regardless of the type of centrality used to identify hubs (Figure 2).

Eliminating these hubs steadily decreased the global and local

Table 1. Summary of networks used to evaluate network
topology and dynamics.

Topology Dynamics

S Eglob Eloc SA ABBM

Number of nodes 15996 15996 15996 15996 90

Threshold? Yes Yes Yes No Yes

Weighting type Binary Binary Binary Weighted (+) Weighted (+, 2)

S: size of giant component, Eglob: global efficiency, Eloc: local efficiency, SA:
spreading activation, ABBM: agent-based brain-inspired model.
doi:10.1371/journal.pcbi.1002885.t001
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efficiency of the network as well. When comparing the removal of

nodes based on different centrality metrics, removing nodes with

high eigenvector centrality had the least effect on the networks.

Network metrics declined visibly less for the removal of high

eigenvector centrality nodes compared to degree or leverage, when

evaluating all three of the network metrics. Targeted attack on

high betweenness nodes was not highly different from degree or

leverage, but it is notable that betweenness was also not highly

different from eigenvector centrality when assessing local efficien-

cy. Table S1, Table S2, and Table S3 in Text S1 show the

ranges where there was a statistically significant difference in the

size of the giant component, global efficiency, or local efficiency

depending on the type of attack.

Targeted attack and random failure were also evaluated on a

network with randomized connectivity. This network was gener-

ated using the method described in [31], where a functional brain

network was rewired such that the degree distribution was

preserved. The size of the giant component, local efficiency, and

global efficiency underwent noticeably steeper declines after

targeted attack than the original brain networks. Results from

this experiment can be found in Text S2.

Dynamical analyses using a spreading activation model
Simulations using a spreading activation model were employed

to demonstrate changes in network dynamics after targeted attack

or random failure. Figure 3 contains the results of the spreading

activation model using the original (intact) network of one subject,

as well as after attacking 20% of the highest degree centrality

nodes. The activity within each node was computed at each time

step, and during the simulation both the intact network and the

attacked network were exhibiting Phase II activity. Recall that the

Phase II activity pattern is characterized by a few nodes having

activation that is exponentially increasing over time, while all other

nodes in the network have activation that decays rapidly to zero.

In the case of the original network, 9 nodes were exhibiting

exponentially increasing activity. Panel A contains the two-

dimensional color map of the time-series for the 9 nodes with

exponentially increasing activity. The total activity in the network

over the course of the simulation, defined to be the sum of

activation across nodes at a given time step, is plotted in panel B.

After the network was attacked, the number of nodes with

exponential activity increased to 14, as pictured in panel C. The

increase in nodes with building activity caused the total activity in

the network, shown in panel D, to increase relative to the intact

network.

Figure 4 shows the total activity achieved at the end of the

simulation (t = 100), depending on the percentage of nodes

removed using the four centrality metrics and for random failure.

The original total activity is included, shown at 0% removed.

These curves illustrate that the total activity achieved in the

network increased depending on the extent of attack when high

centrality nodes are targeted. Total activity was maximal when

high degree and betweenness nodes were removed. Total activity

actually decreased after random failure but removing further

nodes had little effect beyond 5%.

All targeted attack curves in Figure 4 show a peak in total

activity at a certain percentage of nodes removed. The peak in the

curves corresponding to removal of high degree nodes occurs at

35%, and the peak corresponding to removal of high betweenness

and eigenvector centrality nodes occurs at 40%. However, the

curve corresponding to removal of high leverage nodes occurs

much sooner, after 20% of nodes have been removed. According

to Equation 1, the signal in a node is the sum of any external

signal, previous activity that has not yet decayed, and new activity

received from neighbors. The first two factors are not directly

impacted by network attacks, as the seed nodes used for initial

external signal are held constant as attacks are performed, and the

decay factor is not dependent on the connectivity matrix.

However, the changes in network connectivity will impact the

spread of activity from neighboring nodes. Leverage centrality is

designed to identify nodes that are connected to more nodes than

their neighbors, and therefore control the content and quality of

the information received by their neighbors. Therefore, leverage

centrality tends to identify hubs whose directly connected

neighbors would be negatively impacted by the loss of those hubs.

As high leverage centrality nodes are removed, the remaining

nodes that are highly dependent on high leverage nodes are not

receiving as much signal. Therefore, leverage has the largest effect

Figure 2. Topological changes in brain networks due to targeted attack and random failure. Panels depict changes in the size of the
giant component (A), global efficiency (B), and local efficiency (C). The size of the giant component (S), was normalized to its original size (S0) in order
to provide a consistent upper bound across subjects. All curves represent averages across 5 subjects, and error bars indicate standard deviations. Four
centrality metrics were used to identify hubs: degree centrality (red), leverage centrality (blue), betweenness centrality (green), and eigenvector
centrality (pink). Random failure (black) is included for comparison.
doi:10.1371/journal.pcbi.1002885.g002

Functional Brain Network Resilience
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on hindering the spread of activation as measured via the peak in

the total activation curves.

Despite the change in total activation, full activation curves

demonstrated that, in the majority of cases, the networks remained

in Phase II after targeted attack or random failure (Figure 5). The

exceptions were networks where 70–80% of high degree centrality

nodes were removed. These networks exhibited Phase I behavior,

in which the total activity in the network decayed to zero.

Activation curves are shown for the original network and after

removing 20%, 40%, 60%, and 80% of nodes. While targeted

attack of high centrality nodes generally increased the total activity

in the network (to a point), random failure decreased the total

activity for all levels of node removal. One-sample t-tests were

performed to compare the final total activity across the 5 subjects

after removing 20%, 40%, 60%, and 80% of the nodes. Text S1
contains the resulting statistics.

Total activity curves after removing high centrality hubs and low

centrality antihubs are shown in Figure 6 for a single subject.

Recall that the seeds selected for this experiment were different from

those used in previous experiments. Here, seed nodes were

randomly chosen from the population of nodes not selected for

removal as high centrality hubs or low centrality antihubs. It was

necessary that seed nodes not be removed throughout the

simulations in order keep the initial external signal, which originated

Figure 3. Spreading activation in an intact brain network and after targeted attack. (A) The activity of the 9 nodes shown exponentially
increases, while the activity in all other nodes has decayed to zero. (B) The total activity, defined to be the sum of activation across all nodes at a given
time step, illustrates the exponentially increasing activation. This network is exhibiting Phase II behavior. (C) After removing 20% of the highest
degree centrality nodes, there are 14 nodes exhibiting exponentially increasing behavior, where nodes 6 through 14 are the same as pictured in (A).
(D) The total activity of the attacked network (dashed red line) is greater than that of the intact network (solid black line).
doi:10.1371/journal.pcbi.1002885.g003

Functional Brain Network Resilience
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at seed nodes, constant. As the seed nodes for this simulation were

unique from the ones used previously (Figures 3–5), these networks

achieved higher total activity values. As hubs were attacked, the

total activation increased as in the previous simulation. In this case,

the peak and subsequent decrease in final total activity are not

captured, as in Figure 4, although the leverage curve peaked at 20%

of nodes removed in the previous experiment. The profiles of the

degree, leverage, betweenness, eigenvector, and random curves are

similar to Figure 4. On the other hand, as antihubs were attacked,

the activation decreased to a slightly greater extent than random.

Spreading activation experiments were also performed with

seed nodes selected from the auditory cortex. However, the choice

of seed nodes does not appear to change the observed dynamics in

the spreading activation model. The results of this experiment can

be found in Text S3.

Dynamical analyses using an agent-based model
In addition to the spreading activation model, simulations using

an agent-based brain-inspired model (ABBM) were used to

evaluate the impact of targeted attack and random failure on

the ability of the ABBM to support global computation. A genetic

algorithm was used to identify model parameters that enabled the

ABBM to solve the density classification task using the original

(intact) network (see Materials and Methods for details). The

ABBM was then asked to solve the density classification task using

the same parameters while operating on the networks with nodes

removed. Accuracy curves were generated for each subject in

order to evaluate the impact of targeted attack of hubs or antihubs

Figure 4. Changes in final total activity in networks as nodes
are removed. The total activity attained at the end of the simulation
(t = 100 iterations) is shown, averaged across all nodes in the network.
doi:10.1371/journal.pcbi.1002885.g004

Figure 5. Total activity in the network after targeted attack and random failure in an example subject. Nodes are targeted by degree
(A), leverage (B), betweenness (C), and eigenvector centrality (D), as well as at random (E). Curves represent networks after removing 20% (stars), 40%
(triangles), 60% (squares), and 80% of the network (circles). The total activity of the original network is shown in yellow for comparison.
doi:10.1371/journal.pcbi.1002885.g005

Functional Brain Network Resilience

PLOS Computational Biology | www.ploscompbiol.org 7 January 2013 | Volume 9 | Issue 1 | e1002885



and random failure on the ability of the model to solve this task.

Mean accuracy curves, averaged across all subjects, are shown in

Figure 7. On the left half of the density axis, where density ,0.5,

fewer than half of the nodes were on at the first time step. To the

right, where density .0.5, greater than half of the nodes were

initially on. All curves have a pronounced decrease in accuracy

around density = 0.5, where the classification becomes more

difficult. These accuracy curves show that, despite loss of highly

central nodes, the ABBM maintains a high level of accuracy in

solving the density classification task. This would suggest that the

nodes that would be considered to be the most structurally integral

components of the network have only marginal importance in

information flow. On the other hand, the impact of random failure

is greater than any type of targeted attack, specifically in higher

density ranges. An ANOVA comparing mean accuracy across

attack types revealed that targeting low centrality antihubs resulted

in significantly decreased accuracy when compared to targeting

hubs in only a select number of cases. Differences were found

between leverage antihubs and eigenvector antihubs at densi-

ty = 0.46 (mean difference 0.028, p = 0.019), leverage hubs and

eigenvector antihubs at density = 0.53 (mean difference 0.064,

p = 0.040), degree hubs and eigenvector antihubs at density = 0.61

(mean difference 0.046, p = 0.013), and leverage hubs and

betweenness antihubs at density = 0.61 (mean difference = 0.058,

p = 0.019). There were no significant differences in accuracy using

the intact network versus any of the attacked networks.

Discussion

We have presented a study on the topological and dynamical

effects of targeted attack and random failure in human functional

brain networks. Structural analyses employing local and global

efficiency as well as the size of the giant component corroborate

the findings presented in [3] in which the authors measured

changes in the largest cluster size and the path length in functional

brain networks, and further demonstrate that the choice of hub

does not change the results appreciably. For any given centrality

metric, nearly 40% of the nodes were removed before the size of

the giant component qualitatively diverged from the random

failure curve, which underwent a steady decrease as nodes were

removed (although statistically significant differences exist much

earlier). The reduction in local and global efficiency due to

targeted attack followed curves only slightly steeper than random

failure, with the effect on local efficiency somewhat greater than

global efficiency. Global and local efficiency capture characteris-

tics of the network structure that lend themselves to efficiency of

information transfer. High local efficiency indicates topology that

is conducive to local processing specificity, and topology with high

global efficiency is amenable to long range information sharing.

The topological characteristics that give the brain networks good

local efficiency and reasonably high global efficiency are

preserved, even when highly central nodes are targeted. Seem-

ingly, whether high degree, betweenness, leverage, and eigenvec-

tor nodes are targeted, the result is the same: the topology of the

functional brain network is relatively resilient to targeted attack.

Dynamical simulations using the spreading activation model

revealed similar findings for information spreading across func-

tional brain networks. Although targeted attack modified the total

activity in the system at the end of the simulation, there was no

phase transition in the overall behavior. The intact networks

displayed Phase II activity, characterized by a limited number of

nodes exhibiting exponentially increasing activity, while the

activity in all other nodes decayed to zero. Random failure had

very little impact on the total activity in the system. In contrast to

random failure, the total activity in the network increased initially

as high centrality nodes were targeted for removal, indicating that

the signal was pooling in a number of nodes to a greater extent

than before the attack, driven by the a parameter in the spreading

activation model. Subsequently, as an increasing number of nodes

were removed from the network, the final total activity decreased.

Despite these quantitative changes, there was very little qualitative

change in the system across all levels of targeted attack. It is

important to note that the overall qualities of the system dynamics

did not change. Despite initial expectations based on the work by

Tanaka et al. mentioned previously, targeted removal of low

centrality antihubs, while decreasing the final total activity, did not

have a greater effect than targeted removal of highly central hubs.

As Tanaka et al. note, low centrality nodes can maintain higher

levels of activity because they do not spread their activity to many

other nodes, while high centrality nodes tend to disperse activity to

many other nodes. In the spreading activation model, when low

centrality nodes are removed, less activity is allowed to pool, and

the decaying term (c) in the spreading activation model drives the

behavior. On the other hand, removing high centrality nodes and

their accompanying links decreases the dispersion of activity, and

furthermore allows for increased pooling by simultaneously

lowering the centrality of their former neighbors; therefore the

total activity in the system increases.

The density classification task, rather than modeling the

diffusion of information, tests whether a system can support

computation. The agent-based brain-inspired model is constructed

using the structure of the functional brain network. The agents in

the model must make a collective decision (turn on or turn off) in

order to solve the density classification task. As the network

structure changes due to targeted attack or random failure, the

information shared between nodes changes. Previously, we

demonstrated that randomized connectivity patterns are not well

Figure 6. Changes in total activity after targeted attack or
random failure. High centrality hubs (open symbols) and low
centrality antihubs (filled symbols) were targeted for removal to
compare the impact on dynamics in an example subject.
doi:10.1371/journal.pcbi.1002885.g006
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suited to the density classification task, but that the functional

brain network is. Therefore, we tested whether changes in network

topology would impact the ability of the ABBM to make decisions.

While targeted attack of hubs or antihubs impacted the accuracy

to some degree, the average accuracy over a range of densities was

still high, much higher than the accuracy of null models with

randomized connectivity shown in [27]. Random failure resulted

in a greater decrease in accuracy than targeted attack.

The density classification task is not a trivial problem. Each

agent is supplied with a limited amount of local information, and

must infer the state of the entire system. Furthermore, simply using

the majority rule, where an agent chooses to take the state that the

majority of its neighbors have taken, is not effective at solving this

task [30]. Rather, the system must evolve a complex, yet simple,

rule that can solve this task over just a few time steps, and

moreover can accomplish this for any initial configuration. Simply

solving this problem alone is notable, but solving it after 10% of

the most central hubs and their accompanying links have been

removed is an even more impressive feat. The fact that random

networks with the same degree distribution as the brain network

Figure 7. Impact of targeted attack on accuracy of solving the density classification task. Each panel depicts the mean accuracy curve for
each type of targeted attack, averaged across subjects. The mean accuracy curves were generated for the original network (A) and after removing
10% of the nodes based on degree centrality (B), leverage centrality (C), betweenness centrality (D), eigenvector centrality (E), and at random (F). In
panels B–E, solid lines indicate results when targeting hubs, and dashed lines indicate results when targeting antihubs.
doi:10.1371/journal.pcbi.1002885.g007
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cannot solve this task would indicate that the network topology

that enables the brain network to solve the density classification

task remains intact after removal of central nodes. Since the global

efficiency of the network remains high after targeted attack, one

might be tempted to conclude that the efficient long range

communication in the network lends it the ability to support

computation. However, random networks, which cannot solve the

density-classification task, are also characterized by high global

efficiency. On the other hand, elementary cellular automata and

other lattice-like networks with high local efficiency have been

shown to be able to solve the density classification task with high

accuracy [27,30]. In these networks, nodes are clustered into well-

connected groups and can share information readily, and therefore

may be able to synchronize more easily. As high centrality nodes

are targeted for removal from the voxel-wise functional brain

networks, the networks maintain their high local efficiency to a

much greater extent than randomized networks. In the agent-

based model simulations, functional brain networks with 10% of

the highest centrality nodes removed were still able to perform the

density-classification task. These two findings together suggest that

functional brain networks are able to perform computational tasks

after targeted attack because the networks maintain their efficient

local connectivity.

The two models we chose to employ for modeling dynamics on

functional brain networks are the spreading activation (SA) model

designed by Shrager et al. [26], and an agent-based brain-inspired

model (ABBM), originally introduced in a prior publication [27].

The SA model and the ABBM simulate the flow of information in

two disparate ways. We chose the SA model, a type of diffusion

model, due to its application in physiologically relevant settings

over the past several decades. Spreading activation has been used

in artificial intelligence applications such as studying semantic

networks, natural language processing, and information retrieval,

as it was designed to be a model for memory associations and

recall [32,33,34,35].

While diffusion models are prevalent, agent-based modeling

takes a somewhat different approach to simulating information

flow. The ABBM is used to examine information sharing dynamics

that can produce a collective behavior in the system. While the

ABBM does not replicate the exact mechanisms of the brain, the

method of agent-based modeling is well suited to producing

emergent behaviors, which is almost certainly necessary to

produce the most complex human behaviors. In the ABBM, each

agent collects and integrates the information received from each of

its neighbors, distills the information to a binary signal, and makes

a decision on whether to fire based on that signal. Although the

ABBM operates on a far coarser scale, this process mirrors action

potential generation in a neuron.

Other widely used models include artificial neural networks,

which consist of a set of nodes which take an input, operate on the

input using mathematical functions, and produce an output. The

networks are then trained to perform a particular task by allowing

connections and mathematical operations to change. Neural

networks are used in many pattern recognition applications, such

as detecting seizures in EEG data [36,37]. The distinction between

the ABBM and neural network approaches to modeling brain

functions is that the ABBM uses the network architecture

determined from human functional brain imaging data, whereas

the structure of neural networks is often determined by a set of

features and desired outputs. By using functional brain network

connectivity, the ABBM is generalized to solve different tasks

without the need to re-train the network structure.

Alternatively, some researchers model cognitive functions using

physical microcircuits. Neural microcircuits are used in applications

such as the Blue Brain Project [38], where brain-like neural

structures are modeled using a supercomputer dubbed Blue Gene.

The computer consists of a network of 4,096 interconnected

integrated circuits. The enormous computational power of Blue

Gene enables the machine to solve cognitive problems using a brute

force approach (e.g. analyzing the result of any possible move in a

game of chess). Although the computational capability of Blue Gene

is impressive, the advantage of using a combination of genetic

algorithms and agent-based modeling is the elimination of the need

to evaluate all possible outcomes, but instead search the solution

space is a systematic way.

The field of network science provides a multitude of measures to

capture the characteristics of complex systems, but, paradoxically,

the complexity of these systems makes the task of understanding

their underlying mechanisms quite challenging. The brain is

intrinsically difficult to study. The measures and simulations

presented here are surrogates for understanding the structural and

dynamic changes that can occur in the brain. One limitation of

these simulations is that they do not account for functional

specialization of the various brain regions, where specific brain

regions are thought to play key roles in specific functions.

Certainly, many case studies in history have shown that damage

to certain locations in the brain have unique effects due to

functional specialization (e.g., the famous Phineas Gage [39]).

The simulations presented here also do not account for

neuroplasticity, which enables the brain to remap cortical

functionalities in response to sustained injuries. One study by

Rubinov et al. examined the impact of random failure and

targeted attack of high betweenness nodes in a synthetic neuronal

network with neuroplasticity. They showed that allowing for the

addition of new nodes through synaptogenesis, even at rates much

slower than simulated neuronal death, was able to combat the

impact on global and local efficiency [40]. Perhaps incorporating

similar components of neuroplasticity into the models used in this

work would enable an even greater demonstration of resilience.

Despite these limitations, this work progresses our understand-

ing of the resilience of the human functional brain network. Based

on the topological and dynamical simulations presented here, we

conclude that the functional human brain network is highly

resilient to targeted attack, both in terms of network structure and

dynamics.
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However, there are statistically significant differences between

the curves at many levels of attack.
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