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Small-world properties have been demonstrated for many complex networks. Here, we applied the discrete wavelet transform to func-
tional magnetic resonance imaging (fMRI) time series, acquired from healthy volunteers in the resting state, to estimate frequency-
dependent correlation matrices characterizing functional connectivity between 90 cortical and subcortical regions. After thresholding
the wavelet correlation matrices to create undirected graphs of brain functional networks, we found a small-world topology of sparse
connections most salient in the low-frequency interval 0.03– 0.06 Hz. Global mean path length (2.49) was approximately equivalent to a
comparable random network, whereas clustering (0.53) was two times greater; similar parameters have been reported for the network of
anatomical connections in the macaque cortex. The human functional network was dominated by a neocortical core of highly connected
hubs and had an exponentially truncated power law degree distribution. Hubs included recently evolved regions of the heteromodal
association cortex, with long-distance connections to other regions, and more cliquishly connected regions of the unimodal association
and primary cortices; paralimbic and limbic regions were topologically more peripheral. The network was more resilient to targeted
attack on its hubs than a comparable scale-free network, but about equally resilient to random error. We conclude that correlated,
low-frequency oscillations in human fMRI data have a small-world architecture that probably reflects underlying anatomical connectiv-
ity of the cortex. Because the major hubs of this network are critical for cognition, its slow dynamics could provide a physiological
substrate for segregated and distributed information processing.
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Introduction
A remarkable variety of social, economic, and biological net-
works demonstrate “small-world” properties (Strogatz, 2001),
meaning the nodes of the network have greater local interconnec-
tivity or cliquishness than a random network, but the minimum
path length between any pair of nodes is smaller than would be
expected in a regular network or lattice (Watts and Strogatz,
1998). Some small-world networks, such as the worldwide web or
the Hollywood network of movie actors, include a small number
of “hubs,” nodes with an unusually large number of connections
(or large degree) (Barabási and Albert, 1999; Barabási, 2003). The
degree distribution of the worldwide web obeys a power law,
implying no meaningful “average” number of links to each site,

and for this reason, it has been described as a scale-free network
(Barabási and Albert, 1999). Many other small-world networks,
including Hollywood, have exponential or exponentially trun-
cated power law distributions, implying relatively reduced prob-
abilities of huge hubs (Amaral et al., 2000; Albert and Barabási,
2002).

Small-worlds are attractive models for connectivity of nervous
systems because the combination of high clustering and short
path length confers a capability for both specialized or modular
processing in local neighborhoods and distributed or integrated
processing over the entire network (Sporns et al., 2004). It has
been demonstrated that the neuronal network of Caenorhabditis
elegans has small-world topology at a microscopic anatomical
scale (Watts and Strogatz, 1998). Anatomical connectivity matri-
ces from tract-tracing studies of cat and monkey cortices show
small-world properties at a macroscopic scale (Hilgetag et al.,
2000). There is evidence also for small-world properties of graphs
inferred from functional connectivity matrices measured at a
macroscopic (regional) scale in monkey and human neurophys-
iological data (Stephan et al., 2000; Stam, 2004; Salvador et al.,
2005b) and at a mesoscopic (voxel) scale in human functional
magnetic resonance imaging (fMRI) data (Eguı́luz et al., 2005).

Here, we used wavelets to decompose the pairwise correla-
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tions between fMRI time series measured in multiple cortical and
subcortical human brain regions in normal human volunteers
scanned during “rest” or a no-task condition. Analysis of resting-
state data has the advantage that it may focus attention on endog-
enous or background neurophysiological processes; however, it is
disadvantaged by incomplete understanding of the generative
mechanisms and cognitive significance of endogenous, corre-
lated oscillations in fMRI data (we will return to this issue in the
Discussion). Wavelet analysis of these data results in a set of
inter-regional correlation matrices, each matrix describing the
functional connectivity between regions that is subtended by sig-
nal components at a distinct scale or frequency interval (Table 1).
We thresholded the scale-specific wavelet correlation matrices to
estimate small-world properties of the resulting undirected
graphs, and we explored in detail their statistical and anatomical
properties. This allows us for the first time to evaluate the fre-
quency dependency and degree distribution of a small-world
functional network in the entire human brain, to identify and
contextualize the hubs of this network anatomically, and to test
the resilience of the network to random error and targeted attack.

Materials and Methods
Sample. Five healthy human volunteers (age, 25–35 years; two males)
were recruited by advertisement. Volunteers had no personal history of
neurologic or psychiatric disorder, were not taking medication, and were
not abusing alcohol or illicit drugs. All participants gave informed con-
sent in writing. The study was approved by the Addenbrooke’s NHS
Trust Local Research Ethics Committee (Cambridge, UK).

fMRI data acquisition. Each participant was scanned on a single occa-
sion, lying quietly at rest with eyes closed for 37 min, 44 s. Gradient-echo
echoplanar imaging (EPI) data depicting blood oxygen level-dependent
contrast were acquired using a Medspec S300 scanner (Bruker Medical,
Ettlingen, Germany) operating at 3.0T in the Wolfson Brain Imaging
Centre (Cambridge, UK). We acquired 2058 volumes with the following
parameters: number of slices, 21 (interleaved); slice thickness, 4 mm;
interslice gap, 1 mm; matrix size, 64 � 64; flip angle, 90°; repetition time
(TR), 1100 ms; echo time, 27.5 ms; in-plane resolution, 3.125 mm. The
first 10 volumes were discarded to allow for T1 saturation effects, leaving
2048 volumes available for analysis of resting state connectivity in each
subject.

fMRI data preprocessing. Each data set was corrected initially for geo-
metrical displacements because of estimated head movement and coreg-
istered with the MNI (Montreal Neurological Institute) EPI template
image, using an affine transform implemented in SPM2 software (www.
fil.ion.ucl.ac.uk/spm). The data were not spatially smoothed before re-
gional parcellation using the anatomically labeled template image vali-
dated previously by Tzourio-Mazoyer et al. (2002). This parcellation
divides each cerebral hemisphere into 45 anatomical regions of interest,
which are listed in Table 2 together with the abbreviated regional labels
used in this study. Regional mean time series were estimated for each
individual by averaging the fMRI time series over all voxels in each of 90
regions. Each regional mean time series was further corrected for the
effects of head movement by regression on the time series of translations
and rotations of the head estimated in the course of initial movement
correction by image realignment. The residuals of these regressions con-

stituted the set of regional mean time series used for wavelet correlation
analysis.

Wavelet correlation analysis. Wavelet transforms effect a time-scale
decomposition that partitions the total energy of a signal over a set of
compactly supported basis functions, or little waves, each of which is
uniquely scaled in frequency and located in time. Wavelet analysis is
particularly well suited to analysis of signals that have fractal scaling or 1/f
properties, as is typical of cortical fMRI time series in the resting state
(Maxim et al., 2005) [see Bullmore et al. (2004) for a review of wavelet
methods for fMRI data analysis and Percival and Walden (2000) for a
general text on wavelet analysis of time series].

Here, we use the wavelet transform as a basis to estimate the scale-
dependent correlations between each of 4005 possible pairs of the 90
cortical and subcortical fMRI time series extracted from each individual
data set. A scale- or frequency-specific analysis of multivariate neuro-
physiological time series is motivated by previous observations from
electroencephalographic studies that coherence between electrodes is not
equal at all frequencies and anatomically distinct systems of brain regions
may be most coherent at different frequencies. A comparable observation
from previous fMRI studies of functional connectivity (Horwitz, 2003) is
that resting-state correlations are predominantly subtended by very low-
frequency (�0.1 Hz) signal components (Biswal et al., 1995; Lowe et al.,
1998; Cordes et al., 2000), and long-distance connections (e.g., between
the prefrontal and posterior parietal cortices) are especially dependent on
low-frequency coherence (Salvador et al., 2005a).

We applied the maximal overlap discrete wavelet transform
(MODWT; see Appendix) to each regional mean time series and esti-
mated the pairwise inter-regional correlations between wavelet coeffi-
cients at each of the first six scales. This resulted in a set of six {90 � 90}
inter-regional wavelet correlation matrices for each subject, which were
averaged over subjects at each scale to produce six group mean wavelet
correlation matrices (Whitcher et al., 2000). These matrices can be un-
derstood as representing the inter-regional functional connectivity that is
subtended by time series components in the frequency bands defined
approximately by scales 1– 6. For example, the scale 1 wavelet correlation
matrix comprises the functional connectivity subtended by the relatively
high frequency interval 0.23– 0.45 Hz, and the scale 6 matrix comprises
the functional connectivity subtended by the relatively low-frequency
interval 0.007– 0.01 Hz (Table 1).

Small-world analysis of wavelet correlation matrices. Small-world prop-
erties have been described for graphs defined by a number of nodes or
vertices, n, each connected by a number of undirected edges, k, to other
nodes in the network. The key metrics are the degree k, the clustering
coefficient C, and the mean minimum path length L, all defined for each
of the i � 1,2,3,. . . ,n nodes in the network. The clustering coefficient 0 �
Ci � 1 is a ratio that defines the proportion of possible connections that
actually exist between the nearest neighbors of a node (Watts and Stro-
gatz, 1998); high values of Ci imply that most of the nearest neighbors of
that node are also nearest neighbors of each other, or that the node is
located in a cliquish local neighborhood. The minimum path length is
the number of edges comprising the shortest path between any pair of
nodes; the mean minimum path length Li is the average of the n � 1
minimum path lengths between the index node and all other nodes in the
network. The hubs of a network are the nodes with the smallest values of
Li or largest values of ki. All of these quantities can be averaged over nodes
to estimate the network means knet and Cnet and the characteristic path
length Lnet. To diagnose small-world properties, the characteristic path

Table 1. Wavelet scale dependency of functional connectivity and small-world parameters for an entire human brain network

Scale Hz r R Lnet Cnet � � �

1 0.23– 0.45 0.12 0.13 2.9 0.534 1.28 1.81 1.42
2 0.11– 0.23 0.21 0.2 2.6 0.566 1.12 2.14 1.92
3 0.06 – 0.11 0.39 0.39 2.69 0.555 1.16 2.22 1.91
4 0.03– 0.06 0.45 0.44 2.49 0.525 1.08 2.38 2.19
5 0.01– 0.03 0.44 0.35 2.4 0.554 1.04 2.39 2.30
6 0.007– 0.01 0.41 0.17 2.65 0.515 1.15 2.15 1.88

Scales 1– 6 of the MODWT denote progressively lower-frequency intervals (Hz). r is the mean inter-regional correlation, and R is the correlation threshold. Lnet and Cnet are the mean path length and clustering coefficient, respectively, of the
thresholded network. The � and � are ratios of brain network path length and clustering coefficient, respectively, to comparable random network metrics. The equation � � �/� is a scalar measure of “small-worldness.”
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length and clustering coefficient were compared with the same metrics
estimated in random networks configured with the same number of
nodes, mean degree kran, and degree distribution as the network of inter-
est, under the constraint that kran � log(n). Typically, in a small-world
network, we expect the ratio � � Cnet/Cran � 1 and the ratio � � Lnet/Lran

� 1 (Watts and Strogatz, 1998; Montoya and Solé, 2002). A scalar sum-
mary of small-worldness is therefore the ratio � � �/�, which is typically
�1 (Humphries et al., 2005).

To apply these tools to analysis of scale-dependent brain functional
networks, we first had to draw an undirected graph such that the regions
were only connected by an edge in the graph if the wavelet correlation
between regions i and j exceeded a threshold. We defined the threshold
primarily in terms of the probability of the observed correlation P(ri,j �
R) under the null hypothesis that ri,j is less than an arbitrary value R.
Because of the multiple, nonindependent tests entailed by thresholding
each of 4005 inter-regional correlations, we controlled the false discovery
rate (FDR) at the 5% level. So a functional connection between regions
was not regarded as significant unless P(ri,j � R) was less than �FDR, the
p value for an individual test that controlled the FDR at 5% over multiple
dependent tests (Benjamini and Yekutieli, 2001).

The group mean wavelet correlation matrices are shown for all six

scales of the MODWT (Fig. 1), and the effects of thresholding are illus-
trated for the scale 4 matrix using three different values of the correlation
threshold R. Because the value of R is increased, fewer connections sur-
vive thresholding, and the resulting graphs become correspondingly
sparser. If we apply a range of thresholds to the correlation matrices at all
six scales, we can see that the mean degree of the graphs becomes mono-
tonically smaller as the threshold becomes higher (Fig. 2). Increasing the
threshold corresponds to eliminating the weaker connections that are
more likely to be noisy. In contrast, if the threshold is too high, the mean
degree knet of the resulting graph will be less than the log of the number of
nodes [i.e., knet � log(n) � 4.5 in these data] and, under these circum-
stances, small-world properties are not estimable (Watts and Strogatz,
1998). Here, we therefore report primarily the results of thresholding
wavelet correlation matrices with the maximum value of R for which
small-world properties are estimable [i.e., the value of R at which knet �
log(n)].

Anatomical and topological visualization of brain functional networks.
To visualize the thresholded correlation matrices in anatomical space, we
simply located each regional node according to the coordinates of its
centroid in the y–z plane of Talairach space and drew a line between
connected nodes (Figs. 1, 3). The three-dimensional anatomical distance

Table 2. Regions of an entire human brain functional network ranked in order of increasing path length

Abbreviation Region Class Li ki Ci Di �Lnet

PCUN Precuneus Association 1.95 22.5 0.31 57.6 2.59
MTG Middle temporal gyrus Association 2.03 16.5 0.46 76.6 2.44
MFG Middle frontal gyrus Association 2.10 18.0 0.35 72.6 3.55
LING Lingual gyrus Association 2.11 21 0.54 55.8 2.07
MOG Middle occipital gyrus Association 2.14 20.5 0.55 57.0 2.33
SPG Superior parietal gyrus Association 2.14 15.5 0.43 61.7 2.23
PoCG Postcentral gyrus Primary 2.15 20 0.47 62.0 1.34
ITG Inferior temporal gyrus Association 2.18 14 0.52 95.9 1.58
PreCG Precentral gyrus Primary 2.18 20 0.44 62.4 2.49
DCG Dorsal cingulate gyrus Paralimbic 2.21 9.5 0.46 42.2 2.08
SFGdor Superior frontal gyrus (dorsal) Association 2.23 13 0.48 72.2 1.32
CAL Calcarine cortex Primary 2.23 14.5 0.73 37 0.93
STG Superior temporal gyrus Association 2.24 17 0.43 81.9 2.57
FFG Fusiform gyrus Association 2.30 16.5 0.63 63.7 3.77
SMA Supplementary motor area Association 2.39 11 0.62 49.4 1.13
CUN Cuneus Association 2.41 11 0.86 34.3 0.49
IPL Inferior parietal lobule Association 2.42 9.5 0.56 72.4 0.54
ORBsup Orbitofrontal cortex (superior) Paralimbic 2.42 9.5 0.37 67.2 3.82
IFGtriang Inferior frontal gyrus (triangular) Association 2.44 9.5 0.49 71.6 0.61
SOG Superior occipital gyrus Association 2.49 14 0.74 45.0 0.28
THA Thalamus Subcortical 2.51 8 0.51 42.8 0.83
ORBinf Orbitofrontal cortex (inferior) Paralimbic 2.61 6 0.51 57.1 1.14
ORBmid Orbitofrontal cortex (middle) Paralimbic 2.66 6 0.57 59.5 �0.15
SMG Supramarginal gyrus Association 2.70 5.5 0.70 77 �0.27
PCG Posterior cingulate gyrus Paralimbic 2.73 4.5 0.68 30.4 �0.35
IOG Inferior occipital gyrus Association 2.75 6.5 0.92 58.7 �0.40
PCL Paracentral lobule Association 2.77 6 0.93 26.6 �0.43
ROL Rolandic operculum Association 2.77 7.5 0.74 62.1 �0.45
IFGoperc Inferior frontal gyrus (opercular) Association 2.78 5.5 0.62 65.0 �0.46
SFGmed Superior frontal gyrus (medial) Association 2.8 7 0.50 49.6 0.49
INS Insula Paralimbic 2.94 5.5 0.63 68.6 �0.64
ANG Angular gyrus Association 3.03 5 0.0.20 79.1 �0.89
HES Heschl’s gyrus Primary 3.07 3.5 0.92 60.4 �1.21
TPOsup Temporal pole (superior) Paralimbic 3.14 5 0.42 70.7 �0.38
TPOmid Temporal pole (middle) Paralimbic 3.2 3 0.08 80.3 �0.46
REC Rectus gyrus Paralimbic 3.2 3 0.5 36 �1.53
HIP Hippocampus Limbic 3.3 3.5 0.15 34.5 �0.25
CAU Caudate Subcortical 3.35 3 1 33.6 �1.94
PHG Parahippocampal gyrus Paralimbic 3.38 2.5 0 28 �1.08
ORBsupmed Orbitofrontal cortex (superior-medial) Paralimbic 3.46 2.5 0 26.2 �2.09

Major “hubs” of the network are listed first. Li, Ci, and ki are the characteristic path length, clustering coefficient, and degree, respectively, of the ith region. Di is the mean Euclidean distance of connections to that region. �Lnet is the
percentage of change in global mean path length when the network is attacked by eliminating the ith region and its connections. The regions are classified as the primary, association, paralimbic, or limbic cortex as described by Mesulam
(2000). Network hubs, defined as those regions with characteristic path length less than global network mean path length (2.49), are listed in bold; clustering coefficients are italicized for those hubs in which they are less than the global
mean clustering coefficient (0.525).
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between connected nodes was estimated by the
Euclidean distance between regional centroids
D

i,j
� (xi � xj)

2�( yi � yj)
2 � (zi � zj)

2, and
long-distance connections, defined as those
edges connecting regions separated by a dis-
tance �7.5 cm, could then be distinguished
graphically by line color (Fig. 3). The Euclidean
distance here serves merely as an approxima-
tion to the true physical distance (axonal
length) of connections between regions.

To clarify visualization of the regional hubs,
we also mapped the thresholded correlation
matrices topologically using NEATO imple-
mented in Graphviz (Koutsofios and North,
1991) (Fig. 4). This software instantiates an al-
gorithm proposed by Kamada and Kawai
(1989): for any pair of nodes, the graph is
drawn such that the graphical distance between
nodes approximates the path length between
them; thus, the hubs of the network, which
have a short mean path length to other regions,
will tend to be clustered in the center of the
plot, whereas nodes with a relatively long path
length to other regions will tend to be located
peripherally. This method can be regarded as a
variant of multidimensional scaling for binary
(thresholded) matrices rather than continuous
(correlation or distance) matrices.

Resilience of brain functional networks to ran-
dom error and targeted attack. To assess the re-
silience of the brain network to random error
and targeted attack, we adopted the approach
described by Albert and Barabási (2002). Ran-
dom error of the network was simulated by se-
lecting one regional node at random and re-
moving it (and all its connections) from the
graph before recalculating the size of the largest
connected cluster in the network and its mean
path length Lnet. We then repeated this process,
incrementally eliminating additional nodes
from the network at random, until the size of
the largest cluster was 1. The same process was
applied to simulate a targeted attack, but in this
case, the first node to be eliminated was the hub
with the largest degree, and nodes were subse-
quently eliminated in rank order of decreasing
degree. The curves describing change in the
largest cluster size and mean path length as a
function of random error and targeted attack
on the brain network were compared with
equivalent curves calculated by random and
targeted elimination of nodes in an Erdös-
Rényi random network and a scale-free net-
work, both of which had the same number of
nodes and mean degree as the brain network.

Additionally, to explore the global impact of
a single isolated “lesion,” we systematically
eliminated each regional node (and all its con-
nections) in turn and re-estimated the mean
path length of the network in its absence. The
difference in path length �Lnet before and after
isolated elimination of a single node provides a
measure of the centrality of that region to
global network topology.

Results
Scale dependency of functional connectivity
Brain functional connectivity was most salient in the frequency
interval 0.03– 0.06 Hz represented by the scale 4 wavelet correla-

tion matrix. The mean wavelet correlation coefficient was great-
est at scale 4 (Table 1), and the degree of the thresholded graphs
was consistently greatest at scale 4 over a wide range of correla-
tion thresholds (0.2 � R � 0.44) (Fig. 2). The maximum corre-
lation threshold for scale 4 [i.e., the value of R (0.44) correspond-

Figure 1. Schematic of wavelet correlation analysis, thresholding, and functional network visualization. Top, fMRI time series
recorded from each of 90 regions in each subject are decomposed using the MODWT, and the inter-regional correlation is esti-
mated at each scale of the MODWT for each pair of regions in each subject; individual wavelet correlation matrices are then
averaged over subjects at each scale to produce a set of six group mean wavelet correlation matrices. Middle, The wavelet
correlation matrices are thresholded to generate binary matrices, each element of which is either black (if there is no significant
connection between regions) or white (if there is). The stringency of the probabilistic thresholding operation is determined by the
value of the correlation threshold R, as illustrated by applying three different thresholds (R � 0.3, 0.4, 0.5) to the scale 4 wavelet
correlation matrix. Bottom, Thresholded matrices are visualized in anatomical space by locating each region according to its y and
z centroid coordinates in Talairach space and drawing an edge between regions that are significantly connected.
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ing to mean degree � log(n)] was greater than for any other scale.
The mean path length of the network obtained by thresholding
the scale 4 correlation matrix was Lnet � 2.49, with clustering
coefficient Cnet � 0.525. Compared with random graphs
matched for number of nodes, mean degree, and degree distribu-
tion, the scale 4 brain network had an almost identical path length
(� � 1.09) but was more locally clustered (� � 2.37), resulting in
a small-world scalar � � 2.18. Small-worldness decreased mono-
tonically with R, because lower thresholds make the network to-
pology less clearly distinguishable from matched random graphs,
but small-world properties indicated by � � 1 were evident over
a range of values of R at all scales. In view of the greater strength of
functional connectivity at scale 4, here we focus detailed attention
primarily on the scale 4 brain network corresponding to 0.03–
0.06 Hz. However, we note that the brain network derived from
the scale 5 correlation matrix also had � � 2 at high values of R,

implying that small-world properties were salient also in the fre-
quency interval 0.01– 0.03 Hz (Table 1).

Anatomical and topological maps of low-frequency network
An anatomical map of this low-frequency brain network (Fig. 3)
had sparse connectivity overall [comprising 405 edges or �10%

Figure 2. Small-world properties of brain networks as a function of correlation threshold. a,
As the correlation threshold R is increased, mean degree k monotonically decreases (the net-
works become more sparsely connected) at all scales of the wavelet transform: black lines, scale
1; red lines, scale 2; green lines, scale 3; dark blue lines, scale 4; light blue lines, scale 5; purple
lines, scale 6. When the mean degree is less than the log of the number of regions [i.e., knet �
log(n)], small-world properties are not estimable. b, The largest cluster size also tends to de-
crease as the correlation threshold is increased (i.e., the networks become progressively more
fragmented as connections are eliminated at higher thresholds). c, The ratio � � Cnet/Cran

tends to increase as the correlation threshold is increased (i.e., compared with closely matched
random networks, the brain networks demonstrate progressively greater clustering at higher
thresholds). d, The ratio � � Lnet/Lran is only modestly increased as a function of correlation
threshold (i.e., compared with closely matched random networks, the brain networks demon-
strate approximately equivalent path lengths over all thresholds). e, The ratio � � �/�, a
scalar summary of small-worldness, therefore tends to increase as a function of increasing the
correlation threshold. Note that the evidence for small-world properties is clearest at high
thresholds in scales 4 and 5 (collectively corresponding to the frequency interval 0.01– 0.06 Hz),
but there is some evidence for small-world properties (� � 1) over a range of thresholds in all
scales.

Figure 3. Anatomical map of a small-world human brain functional network created by
thresholding the scale 4 wavelet correlation matrix representing functional connectivity in the
frequency interval 0.03– 0.06 Hz. a, Four hundred five undirected edges, �10% of the 4005
possible inter-regional connections, are shown in a sagittal view of the right side of the brain.
Nodes are located according to the y and z coordinates of the regional centroids in Talairach
space. Edges representing connections between nodes separated by a Euclidean distance �7.5
cm are red; edges representing connections between nodes separated by Euclidean distance
�7.5 cm are blue. b, Short-distance connections, predominantly in the posterior cortex, are
shown separately in red. c, Long-distance connections (e.g., between the frontal cortex and
regions of the parietal and temporal association cortex) are shown separately in blue.
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of the total number of possible edges (4005)] but showed neigh-
borhoods of dense local connectivity and clustering, especially in
the occipital and parietal cortex, as well as a number of long-
distance connections (with Euclidean distance �7.5 cm), espe-
cially between regions of the frontal cortex [middle frontal gyrus
(MFG), dorsal superior frontal gyrus (SFGdor), inferior frontal
gyrus (IFG), supplementary motor area (SMA), superior orbito-
frontal cortex] and heteromodal regions of the lateral temporal
and parietal association cortex [inferior temporal gyrus (ITG),
middle temporal gyrus (MTG), superior temporal gyrus (STG),
inferior parietal lobule (IPL), precuneus (PCUN), angular gyrus
(ANG), supramarginal gyrus (SMG)]. The network also had
marked bilateral symmetry: many regions (43 of 90) were con-
nected to their contralateral homologs, and the right and left
intrahemispheric connections were similar. Most brain regions
(79 of 90) were connected to a single giant cluster: isolated re-
gions were the left and right olfactory cortex, anterior cingulate
cortex, pallidum, putamen, and amygdala (all of which had sym-
metrical connectivity between bilateral homologs).

A topological map (Fig. 4) clarified the regional identity of the
hubs by clustering nodes with a large degree at the center of the
plot so that the small geometric distances between the plotted
symbols approximated the short path lengths between these
highly connected cortical regions. This representation also high-
lights the relative paucity of connections to limbic/paralimbic
regions and the concentration of long-distance connections be-
tween hub regions of the association cortex.

Degree distribution and hubs
The degree distribution was somewhat heavy-tailed or heteroge-
neous (Fig. 5). Goodness-of-fit was compared using Akaike’s in-
formation criterion (AIC) for three possible forms of the degree
distribution P(k): a power law, P(k) � k� �; an exponential,

P(k) � e� �k; and an exponentially truncated power law, P(k) �
k � �1 ek/kc. Of these, the exponentially truncated power law was
the best-fitting model for the degree distribution (AIC � 545
compared with 578 and 623 for the exponential and power law,
respectively) with estimated exponent � � 1.80 and cutoff degree
kc � 5.

Twenty hubs of this network, defined in terms of a regionally
characteristic path length averaged over both hemispheres that
was less than the network mean path length, Lnet � 2.49, included
15 regions of the heteromodal or unimodal (especially visual)
association cortex, 3 regions of the primary sensory or motor
cortex, and two regions of the paralimbic cortex (for details, see
Table 2). The less well connected nodes, in contrast, included
several regions of the limbic or paralimbic cortex such as the
hippocampus, parahippocampal gyrus, insula, most temporal
pole, and orbitofrontal regions.

Clustering was negatively correlated with connection distance
over all neocortical nodes in the network (r � �0.58; df � 25; p �
0.0046) (Fig. 6). Regions of the parietal, temporal, and frontal
heteromodal association cortex (IPL, PCUN, superior parietal
gyrus, ANG, SMG, STG, MTG, ITG, MFG, SFGdor, triangular
IFG) tended to have both low clustering and long connection
distances, indicating that they were strongly connected to remote
regions that were not otherwise connected to each other. Regions
of the primary and unimodal association cortex [calcarine cortex
(CAL), inferior occipital gyrus, middle occipital gyrus (MOG),
fusiform gyrus (FFG), lingual gyrus (LING), Heschl’s gyrus,
SMA] tended to show a contrasting pattern of high clustering and
short connection distances, indicating that they were strongly
connected to a clique of richly interconnected, neighboring re-
gions. Limbic nodes did not show an association between clus-
tering and distance.

Figure 4. Topological map of a small-world human brain functional network created by thresholding the scale 4 wavelet correlation matrix representing functional connectivity in the frequency
interval 0.03– 0.06 Hz. The regions have been located by multidimensional scaling of the (binary) thresholded matrix so that the distance between them in the space of this plot approximates the
path length between them; network hubs are clustered centrally, and less well connected regions are located peripherally. Long-distance connections subtending a Euclidean distance between
regional centroids �7.5 cm are drawn as black lines, and short-distance connections are drawn as gray lines; regional labels and color codes are as in Figure 6. See Table 2 for the list of abbreviations.
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Resilience of brain functional network
The brain network was approximately as resilient to random er-
ror as the random and scale-free networks. However, it was con-
siderably more resilient to targeted attack than the scale-free net-
work (Fig. 7). The size of the largest connected cluster in the
scale-free network was reduced by 50% by targeted attack on the
most highly connected 20% of hubs; the brain network did not
disintegrate to the same extent until �40% of the most connected
nodes had been attacked. The global mean path length of the
brain network increased by a factor of 2 as the top 40% of nodes
were eliminated by targeted attack (Fig. 7).

The percentage of change in global mean path length was
estimated after individually attacking each regional node. As
shown in Table 2, the most damaging attacks were generally on
hub regions such as the MFG and SFGdor; PCUN; STG, MTG,
and ITG; MOG, FFG, and LING; primary visual, somatosensory,
and motor cortex (CAL, postcentral gyrus, precentral gyrus); and
thalamus. Elimination of these nodes was associated with a few
percentage points increase in global mean path length estimated
in the remaining network.

Discussion
The picture that emerges overall is that of a sparse, resilient, low-
frequency, small-world human brain functional network with a
heterogeneous degree distribution reflecting a highly connected
neocortico-cortical “core” and a less well connected paralimbic-
limbic “periphery.”

Anatomy of human and primate brain small-world networks
At a global level of analysis, the small-world properties of the
human brain functional network demonstrated here are quanti-
tatively similar to those reported previously by anatomical stud-
ies of cat and macaque cortex using equally carefully matched
random networks to assess path length and clustering (Sporns
and Zwi, 2004). For example, the anatomical network derived
from tract-tracing studies of the entire macaque cortex had � �
1.16, � � 3.07, and � � 2.65, whereas the human brain functional
network reported here had � � 1.09, � � 2.37, and � � 2.18.

The anatomical identities of the regional hubs of this mark-
edly symmetric network are arguably not too surprising: large-
scale neocortico-thalamic circuits are key physiological sub-
strates for human cognition and consciousness (Tononi et al.,
1998; Mesulam, 2000), and the association cortex, by definition,
receives rich and convergent inputs from multiple other cortical
regions (Mesulam, 2000). More specifically, the only previous
study to have measured characteristic path length and clustering
for individual cortical regions [based on anatomical connectivity
in cat and monkey cortex (Sporns and Zwi, 2004)] also found that
many hubs were regions with multimodal or integrative func-
tions, low path lengths, and low clustering coefficients: “In the
entire connection system of macaque cortex, areas with markedly
low path length and clustering include A7b, LIP, TPT, FEF, and
A46, all of which mediate interactions between various sensory
and motor systems” (Sporns and Zwi, 2004). The relatively mar-
ginal or isolated topological location of the limbic and paralimbic
cortex is also not unprecedented anatomically. In macaque cor-
tex, afferent and efferent connectivity was approximately equally
balanced, but the anterior cingulate cortex (area 24) and amyg-
dala showed remarkably few afferent connections (Kötter and
Stephan, 2003). One might ask whether low functional connec-
tivity in limbic regions demonstrated by fMRI was attributable to
susceptibility artifact, because regions such as the hippocampus
and orbitofrontal cortex are in close juxtaposition to CSF, air, or

Figure 6. Relationship between local clustering and mean physical distance of connections
to brain regions. The scatter plot of Euclidean distance Di ( y-axis) versus clustering coefficient Ci

(x-axis) is shown. The regions are labeled with the abbreviations in Table 2 and color-coded as
follows: black, association cortex; red, paralimbic/limbic cortex; green, primary sensory or mo-
tor cortex. The fitted lines are shown for regression of distance on clustering for neocortical
(black) and limbic/paralimbic (red) regions; the dotted lines indicate the network mean values
of distance and clustering coefficient. Distance and clustering were negatively correlated over
neocortical (but not limbic) regions; the unimodal association cortex tended to have high clus-
tering and short mean connection distances, whereas the heteromodal association cortex
tended to have the opposite pattern of low clustering and long mean connection distances.

Figure 5. Degree distribution of a small-world brain functional network. a, Histogram of
regional degree ki distribution. b, Plot of the log of the cumulative probability of degree,
log(P(ki)), versus log of degree, log(ki). The plus sign indicates observed data, the solid line is the
best-fitting exponentially truncated power law, the dotted line is an exponential, and the
dashed line is a power law.
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bone. However, we found high connectiv-
ity in nonlimbic regions also prone to sus-
ceptibility effects, such as the inferior tem-
poral cortex, and low connectivity in
subcortical regions, such as the pallidum,
where susceptibility effects will be small,
so we consider this possible interpretation
to be unlikely.

In short, we propose that the human
brain functional network described here is
likely to reflect an underlying anatomical
architecture with small-world properties
and hubs of long-distance connectivity in
regions of the heteromodal association
cortex. This prediction could perhaps be
tested by future tractography studies of
human brain connectivity using diffusion
tensor imaging.

Why the human brain network is not
scale-free
If the topology of the human brain ana-
tomical network, which we assume
strongly conditions the observed topology
of the functional network, had developed
or evolved by preferential attachment, or a
“rich-get-richer” rule, whereby nodes
joining the network were most likely to connect to the nodes that
already had the largest number of connections (Albert and Bara-
bási, 2002), one would not expect relatively late-developing re-
gions such as the dorsolateral prefrontal cortex (MFG, SFGdor)
to be among the hubs of the functional network. The observation
that it is regions of the association cortex, rather than the more
primitive limbic or paralimbic regions, that dominate the highly
connected core of the entire brain network is one piece of evi-
dence against a scale-free model for this system. Two other pieces
of evidence against a scale-free model are (1) that the brain net-
work was more resilient to targeted attack than a comparable
scale-free network and (2) that its degree distribution did not
follow a power law.

The resilience of the brain network was assessed in response to
both random error and targeted attack. Compared with a scale-
free network, it was about equally resilient to random error but
considerably more resilient to targeted attack. Whereas a scale-
free network tends to disintegrate rapidly when the hubs are se-
lectively attacked (Albert et al., 2000), up to 40% of the most
connected nodes in the brain network could be eliminated before
precipitating a 50% reduction in size (and twofold increase in
path length) of the largest connected cluster. It seems that the
small-world architecture of the brain may confer distinctive ben-
efits in terms of robustness to both random elimination of nodes
and selective attack on hubs, and, of course, one can speculate
that this robustness might have considerable fitness value in mit-
igating the loss of network functionality in the face of develop-
mental aberration or disease.

A log–log plot of the degree distribution of the brain network
clearly was not linear (Fig. 5), as it would be for a scale-free
network with a power law distribution. Indeed the best-fitting
distribution was an exponentially truncated power law that de-
fined a scaling regimen, followed by an exponential decay in
probability of hubs with a degree greater than a cutoff value of
�5. Comparable exponential or truncated power law distribu-
tions have been shown previously for the neural network of C.

elegans as well as the Hollywood actor network, the western
United States electrical power supply grid, and the United States
airport network (Strogatz, 2001; Amaral et al., 2000). These di-
verse networks are all physically constrained in one or more ways
that are likely to make the emergence of very highly connected
hubs less probable than a power law would predict: Hollywood
actors grow old and eventually stop making movies; the wiring
costs of adding a connection between power generators or neu-
rons separated by long distances may be prohibitive; the dynam-
ical consequence of scheduling another flight into an already con-
gested hub airport may be to disrupt services throughout the
network of the airline. It seems likely a priori (Laughlin and
Sejnowski, 2003; Sporns et al., 2004; Sporns and Zwi, 2004; Kaiser
and Hilgetag, 2004a,b) that similar physical constraints (aging or
connection costs) might apply to the formation of whole-brain
functional networks and thus account for the empirical form of
this degree distribution.

Comparable previous fMRI studies
Small-world properties have been reported previously for net-
works derived from time-domain analysis of inter-regional cor-
relations in fMRI (Salvador et al., 2005b; Eguı́luz et al., 2005), and
there have been previous fMRI studies of frequency dependency
of functional coherence between regions in the Fourier domain
(Sun et al., 2004; Salvador et al., 2005a; Wink et al., 2005). How-
ever, this is the first study both to use wavelets for frequency
decomposition of inter-regional correlations or functional con-
nectivity and to describe the anatomy and small-world topology
of the resulting low-frequency networks. Wavelet correlation
analysis parsimoniously summarizes the frequency dependency
of brain functional connectivity in terms of a small number of
scale-specific correlations (compared with a larger number of
frequency-specific coherences in the Fourier domain) and the
statistical properties of covariance estimators based on the
MODWT have been well described (see Appendix for detail).
Eguı́luz et al. (2005) reported a small-world and scale-free topol-

Figure 7. Resilience of the human brain functional network (right column) compared with random (left column) and scale-free
(middle column) networks. Top row, Size of the largest connected cluster in the network (scaled to maximum; y-axis) versus the
proportion of total nodes eliminated (x-axis) by random error (dashed line) or targeted attack (solid line). Bottom row, Global
mean path length (Lnet ; y-axis) versus the proportion of total nodes eliminated (x-axis) by random error (dashed line) or targeted
attack (solid line). The size of the largest connected cluster in the brain functional network is more resilient to targeted attack and
about equally resilient to random error compared with the scale-free network.
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ogy in networks derived from experimentally activated fMRI
time series at voxel resolution. The difference between the power
law degree distribution of their network, based on activated voxel
data, and the truncated power law degree distribution of the net-
work reported here, based on resting-state fMRI data at regional
resolution, suggests that small-world properties of brain func-
tional networks could be conditioned by anatomical resolution of
analysis and/or experimental stimulation of the subjects.

Neural and cognitive correlates of correlated low-frequency
oscillations in fMRI
Our finding that small-world networks exist at low frequencies
(0.01– 0.11 Hz), and most saliently in the 0.03– 0.06 Hz interval,
is consistent with many previous studies of resting-state fMRI
data, which have typically reported strongest resting-state inter-
regional correlations at low frequencies �0.1 Hz (Biswal et al.,
1995; Lowe et al., 1998; Cordes et al., 2000; Salvador et al., 2005a).
There are also comparable observations of low-frequency oscil-
lations in optical imaging data (Mayhew et al., 1996). Both age
and muscarinic receptor blockade increased the spectral power of
low frequencies in hippocampal fMRI time series recorded at
rest, and these changes were associated with increased fronto-
hippocampal coherence (Wink et al., 2005). Experimental stud-
ies manipulating the sampling rate for fMRI (e.g., using short TR
sequences) have shown that low-frequency power or coherence is
unlikely to represent (possibly aliased) signals related to the car-
diac or respiratory cycles (Cordes et al., 2000; Kiviniemi et al.,
2005). Moreover, long period or very low-frequency coherent
oscillations have been described recently in both monkey and
human electrophysiological data (Linkenkaer-Hansen et al.,
2001; Leopold et al., 2003). For example, slow (� 0.1 Hz) and
coherent fluctuations in band-limited power of multielectrode
local field potential recordings from monkey visual cortex were
clearly of neuronal origin and might be related to low-frequency
fluctuations in fMRI time series (Leopold et al., 2003). Together,
these data strongly suggest that low-frequency oscillations and
correlations in resting-state fMRI data are neurobiologically in-
teresting and may reflect endogenously coordinated dynamics in
large-scale neuronal populations.

Appendix
We used the MODWT (Percival and Walden, 2000), instead of
the orthogonal DWT, to estimate wavelet correlations. The
MODWT is a redundant transform that is translation invariant
and straightforward to compute using the pyramid algorithm.
MODWT-based estimators of wavelet correlation are superior to
those derived from the orthogonal DWT (Whitcher et al., 2000).

MODWT
The MODWT is defined formally as follows. Let X be a time series
of length N. Let {hj,l;l � 0,. . . ,Lj � 1} and {gj,l;l � 0,. . . ,Lj � 1} be,
respectively, a jth level wavelet filter and scaling filter; here, Lj �
(2j � 1)(L � 1) � 1, and L denotes the width of the initial filter.
The corresponding jth level MODWT wavelet and scaling filters
are defined, respectively, by h

�
j,l � hj,l/2

j /2 and g
�

j,l � gj,l/2
j /2 and

have the same width Lj. Then the jth level MODWT wavelet and
scaling coefficients are N dimensional vectors denoted, respec-
tively, Wj and Vj and defined, for t � 1,. . . ,N � 1, by the
following:

W j,t
	X
 � �

l�0

Lj�1

h̃j,lXt�l modN (A1)

and

V j,t
	X
 � �

l�0

Lj�1

g̃j,lXt�l modN . (A2)

The MODWT yields an energy decomposition:

�X�2 � �
j�1

J

�Wj�2 � �VJ�2 . (A3)

MODWT estimator of wavelet correlation
Let us denote by {Xt}t � 0,. . . ,N � 1 and {Yt}t � 0,. . . ,N � 1, realizations
of the processes {Xt}t and {Yt}t that are Gaussian processes with
stationary increments. Then for N � Lj, the scale-dependent co-
variance between {Xt } and {Yt } is estimated by the following:

�XY	�j
 �
1

Nj
�

l�Lj�1

N�1

Wj,l
	X
Wj,l

	Y
 , (A4)

which is an unbiased estimator of

�XY	�j
 �
1

2�j
Cov�Wj,t

	X
Wj,t
	Y
� , (A5)

where

�W j,t
	X
� and �Wj,t

	Y
�

are the scale �j � 2j � 1 MODWT coefficients for {Xt } and {Yt},
respectively, and Nj � N � Lj � 1 (Whitcher et al., 2000).

An estimator of the wavelet correlation is then defined
(Whitcher et al., 2000) as follows:

�XY	�j
 �
�XY	�j


	X	�j
	Y	�j

, (A6)

where

	X
2 	�j
 � Var	Wj
/2�j

is the wavelet variance for the time series X.
Assuming that L � 2d, and

�W j,l
	X
 , Wj,l

	Y
�

is a bivariate Gaussian weakly stationary process with square in-
tegrable autospectra, then the MODWT estimator of the wavelet
correlation �XY(�j) is asymptotically normally distributed with
mean �XY(�j) and a large sample variance (Gençay et al., 2001).
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Montoya JM, Solé RV (2002) Small world patterns in food webs. J Theoret
Biol 214:405– 412.

Percival DB, Walden AT (2000) Wavelet methods for time series analysis.
Cambridge, UK: Cambridge UP.

Salvador R, Suckling J, Schwarzbauer C, Bullmore ET (2005a) Undirected
graphs of frequency-dependent functional connectivity in whole brain
networks. Philos Trans R Soc Lond B Biol Sci 360:937–946.

Salvador R, Suckling J, Coleman M, Pickard JD, Menon DK, Bullmore ET
(2005b) Neurophysiological architecture of functional magnetic reso-
nance images of human brain. Cereb Cortex 15:1332–1342.

Sporns O, Zwi JD (2004) The small world of the cerebral cortex. Neuroin-
formatics 2:145–162.

Sporns O, Chialvo DR, Kaiser M, Hilgetag CC (2004) Organization, devel-
opment and function of complex brain networks. Trends Cogn Sci
8:418 – 425.

Stam CJ (2004) Functional connectivity patterns of human magnetoen-
cephalographic recordings: a “small-world” network? Neurosci Lett
355:25–28.

Stephan KE, Hilgetag CC, Burns GAPC, O’Neill MAO, Young MP, Kötter R
(2000) Computational analysis of functional connectivity between areas
of primate cerebral cortex. Philos Trans R Soc Lond B Biol Sci
355:111–126.

Strogatz SH (2001) Exploring complex networks. Nature 410:268 –276.
Sun FT, Miller LM, D’Esposito M (2004) Measuring inter-regional func-

tional connectivity using coherence and partial coherence analyses of
functional MRI data. NeuroImage 21:647– 658.

Tononi G, Edelman GM, Sporns O (1998) Complexity and coherency: in-
tegrating information in the brain. Trends Cogn Sci 2:474 – 484.

Tzourio-Mazoyer N, Landeau N, Papathanassiou B, Crivello D, Etard F, Del-
croix O, Mazoyer B (2002) Automated anatomical labeling of activa-
tions in SPM using a macroscopic anatomical parcellation of the MNI
MRI single-subject brain. NeuroImage 15:273–289.

Watts DJ, Strogatz SH (1998) Collective dynamics of “small-world” net-
works. Nature 393:440 – 442.

Whitcher B, Guttorp P, Percival DB (2000) Wavelet analysis of covariance
with application to atmospheric time series. J Geophys Res 105:941–962.

Wink A-M, Bernard F, Salvador R, Bullmore E, Suckling J (2005) Age and
cholinergic effects on hemodynamics and functional coherence of human
hippocampus. Neurobiol Aging, in press.

72 • J. Neurosci., January 4, 2006 • 26(1):63–72 Achard et al. • A Small-World Human Brain Functional Network


