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Abstract: Our objective was to apply ideas from complexity theory to derive 
expanded neurodynamic models of Submarine Piloting and Navigation showing 
how teams cognitively organize around task changes. The cognitive metric 
highlighted was an electroencephalography-derived measure of engagement 
(termed neurophysiologic synchronies of engagement) that was modeled into 
collective team variables showing the engagement of each of six team members 
as well as that of the team as a whole. We modeled the cognitive organization of 
teams using the information content of the neurophysiologic data streams 
derived from calculations of their Shannon entropy. We show that the periods of 
team cognitive reorganization (a) occurred as a natural product of teamwork 
particularly around periods of stress, (b) appeared structured around episodes 
of communication, (c) occurred following deliberate external perturbation to 
team function, and (d) were less frequent in experienced navigation teams. 
These periods of reorganization were lengthy, lasting up to 10 minutes. As the 
overall entropy levels of the neurophysiologic data stream are significantly 
higher for expert teams, this measure may be a useful candidate for modeling 
teamwork and its development over prolonged periods of training. 
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INTRODUCTION 

Teams have been described as complex dynamic systems that exist in a 
context, develop as members interact over time, and evolve and adapt as situa-
tional demands unfold (Kozlowski & Ilgen, 2006). From the perspective of com-
plexity science, teams can be thought of as self-organized flows of information 
that span biological processes and broader societal activities. As team members 
interact, these often turbulent flows of information organize periodically around 
a common goal only to change form again as the task and environment evolve. 

In the context of the teams of which they are a part, members 
continually modify their actions in response to the changing actions of others 
resulting in dynamic synchronizations of information that can be observed 
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across different systems and subsystems, including verbal (Drew, 2005), 
gestural (Ashenfelter, 2007), postural (Shockley, Santana & Fowler, 2003), 
functional (Gorman, Amazeen, & Cooke, 2010), physiologic (Guastello, Pincus 
& Gunderson, 2006) and, more recently, neurophysiologic (Dumas, Nadal, 
Soussignan, Martinerie, & Garnero, 2011; Stevens, Galloway, & Berka, 2009; 
Stephens, Silbert, & Hasson, 2010). Most of these studies have consisted of two-
to-three person teams performing coordination tasks or tasks in controlled set-
tings. Our goal is to expand these ideas to larger real-world teams where the in-
formation flows are longer and expertise develops at multiple scales.  

Teams, like many complex systems, are thought to operate at a level of 
self-organized criticality between random and highly organized states (Bak, 
Tang, & Wiesenfeld, 1987). That tenuous but significant state has also been 
called the edge of chaos, a feature that allows teams to adapt to both momentary 
disruptions, such as environmental perturbations, and more permanent altera-
tions, such as changes in task requirements. In this way, effective teamwork is 
characterized as the continuous effort involved in stabilization of an inherently 
unstable system (Gorman et al., 2010; Treffner, & Kelso, 1999). At the ‘sweet 
spot’ of organization, a team demonstrates both stability and flexibility through 
supportive co-regulation and adaptive team member interaction. 

In keeping with the dynamics of self-organized criticality, patterns of 
interaction (speech, motion, neurophysiologic changes, etc.) and activity can 
change spontaneously and qualitatively with the flow of the task, and perturba-
tions to teamwork patterns are characterized by fluctuations away from and back 
toward stable states across multiple levels of analysis. In a typical training se-
quence, neural events that span seconds unfold in the context of communication 
events of tens of seconds that over time comprise longer, minutes-long, team 
coordination events, the outcome of which influences subsequent neural events. 
In that structure, we see the circular causality that is characteristic of a complex 
system. When aggregated across training sessions, the tasks in which teams en-
gage provide the framework for structured formal training. The training sequen-
ce depicted in Fig. 1 spans nearly seven orders of magnitude of seconds over a 
10-week course; a weakness in the literature is the lack of integrated models of 
team organization that capture the linkages across these subsystems and time 
scales. Such integrated models could better inform why some teams function 
better than others. Are certain teams more cognitively flexible and able to more 
rapidly enter and exit organized neurophysiologic states? Can these abilities be 
taught, and if so, how? Longitudinal extensions of these models could be 
capable of both predicting teamwork breakdowns and suggesting routes for 
teams to regain their rhythm once it is lost. 

Nonlinear dynamical systems (NDS) is a theoretical and methodologi-
cal approach for understanding complex systems and the linkages within and 
across subsystems in a manner that deemphasizes material substrate in favor of 
observed behavior patterns. NDS is a set of mathematical formalisms that can be 
used to understand the time evolution of physical, behavioral, and cognitive 
systems, including sudden, developmental transitions in those systems as they 

https://www.researchgate.net/publication/44851300_Team_Coordination_Dynamics?el=1_x_8&enrichId=rgreq-11384732-865a-49ac-8be6-80d1f0e51d6a&enrichSource=Y292ZXJQYWdlOzIzMzkzODUwNjtBUzoxMDE1ODE5ODY5OTIxMzJAMTQwMTIzMDQ0MTM4OQ==
https://www.researchgate.net/publication/240237074_Dynamic_Encounters_Long_Memory_During_Functional_Stabilization?el=1_x_8&enrichId=rgreq-11384732-865a-49ac-8be6-80d1f0e51d6a&enrichSource=Y292ZXJQYWdlOzIzMzkzODUwNjtBUzoxMDE1ODE5ODY5OTIxMzJAMTQwMTIzMDQ0MTM4OQ==


 
 
 
 
 
 
 
 
 

evolve.
models
multile
proach
gral pa
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1. 

neurod
have b
levels 
(Steven
Gorma
streams
the team
symbol
to dete
changin
analysi
change
flow o
corresp
tropy l
organiz
In this 
tions in
commu

cols fro

NDPLS, 1

. One feature 
s is their appl
evel systems th
. A second fea
rt of the system

Time scales of
 For several

dynamics of tea
been developin

of Engageme
ns et al., 2011
an, 2011). Tho
s contain infor
m, and this is 
ls during differ
rmine how tho
ng task deman
is. Based on p
es in the dynam
f teamwork, t

ponding way an
evels in the da
zation of team 
study, we des

n the NS data 
unication, and n

The data set
om Junior Offi

17(1), Organiz

that different
licability for d
hat could not 
ture is the emp

m rather than a

f team training.
l years Steven
ams in order t

ng models usin
ent that are te
1; Stevens, Ga
ose prior studi
rmation regard
shown by the

rent periods of
ose NS pattern
nds and across 
prior results, w
mics of the task
the organizatio
nd the degree o
ata stream, wit
neurophysiolo

scribe team org
stream and be
natural and ext

M

P

s for these stud
icer Navigation

zational Neuro

tiates dynamic
describing the 
readily be ch

phasis on chara
s error.  

. 
ns and colleag
to detect patter
ng symbolic re
ermed Neurop
alloway, Wang
ies have show
ding the curren
e unequal expr
f the task. A ch
n dynamics can

different time
we hypothesiz
k or encounter

on of NS data
of organization
th low entropy
ogic state and h
ganization in t

egin to link the
ternal perturba

METHOD 

articipants 

dies were colle
n teams who w

odynamics of T

cal models fro
behavior of 

haracterized us
acterizing varia

agues have be
rns of neural 
epresentations 
physiologic Sy
g, & Berka, 2

wn that the sy
nt and past co
ression and org
hallenge confr
n be modeled 
escales and lev
zed that as tea
red perturbatio
a streams wou
n could be quan
y indicating a g
high entropy l
terms of these 
em with team e
ations in the tas

ected with IRB
were enrolled i

Teams

om convention
highly comple

sing a linear a
ability as an in

een studying t
organization a
of EEG-deriv

ynchronies (N
2011; Stevens 
ymbolic NS da
ognitive states 
ganization of N
ronting us now
in the context 

vels of teamwo
ams experienc

ons to the norm
uld fluctuate in
ntified by the e
greater degree 
less organizatio

entropy fluctu
experience, tea
sk environment

B approved prot
in the Submari

69 

nal 
ex, 
ap-

nte-

the 
and 
ved 
NS) 

& 
ata 
of 

NS 
w is 

of 
ork 
ced 
mal 
n a 
en-
of 

on. 
ua-
am 
t. 

to-
ine 



 
 
 
 
 
 
 
 
70  NDPLS, 17(1), Stevens et al. 

Officer Advanced Candidacy (SOAC) class at the US Navy Submarine School. 
The reported data were derived from 12 Submarine Piloting and Navigation 
(SPAN) simulation sessions that were selected from a total of 21 as: a) persons 
in the same six crew positions were being monitored by EEG, b) the same 
individuals repeated in the same positions across 2-5 training sessions over mul-
tiple days. The six members of the teams that were fitted with the EEG headsets 
were the Quartermaster on Watch (QMOW), Navigator (NAV), Officer on Deck 
(OOD), Assistant Navigator (ANAV), Contact Coordinator (CC), and Radar 
(RAD). Additional persons participating in the SPAN who were not fitted with 
the headsets were the Captain (CAPT), Fathometer reader (FATH), the Helm 
(HELM), and multiple Instructors or Observers (INST). 

Procedures 

Submarine Piloting and Navigation sessions are required high fidelity 
navigation training tasks, and each session contains three segments, beginning 
with a Briefing in which the overall goals of the mission are presented. The Sce-
nario is a dynamically evolving task containing both easily-identified and less 
well-defined teamwork processes. The Debriefing following the Scenario is the 
most structured part of the training; it is a topical discussion of what worked and 
what other options may have been available along with long- and short-term 
lessons. 

One regularly-occurring process during the Scenario is the periodic up-
dating of the ship’s position, termed ‘Rounds’. In taking Rounds, three naviga-
tion points are chosen, and the bearing of each from the boat is measured and 
plotted on a chart. This process occurs every three minutes with a countdown 
from the one-minute mark, where the Recorder logs the data (Fig. 2A). A 
sample navigation task is diagrammed in Fig. 2B: The submarine (whose route 
is indicated by the black circles with time offsets) was being steered northward 
(up) and its position is identified by number at different times (epochs or 
seconds). The submarine encountered an outbound ship (~ epoch 850), an in-
bound merchant (~ epoch 2100), and an outbound merchant (~ epoch 2100), 
each requiring changes in course or speed to avoid collision. In Fig. 2A, the top 
team showed a regular progression of the five-step sequence, being irregular at 
only two points (gray). The second team showed a more disrupted Rounds 
process. 

Quantitative internal and external outcome measures are generally not 
available from SPAN as formative and summative feedback is a group process 
in the style of Total Quality Management (Ahire, 1997). We have attempted to 
develop an internally-derived outcome measure from the frequency or 
completeness of the Rounds sequences.  

The regularity of the Rounds countdown, along with possible 
deviations, was obtained from the speech of the Recorder. When only three (or 
fewer) steps of the Rounds sequence were completed, or when an entire Rounds 
sequence was missed, it often indicates a team that is experiencing difficulty. 
The outcome measure is simply the percentage of completed Rounds sequences. 
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environmental contamination and allow real-time classification of cognitive 
state changes even in challenging environments. The nine-channel wireless 
headset includes sensor site locations F3, F4, C3, C4, P3, P4, Fz, Cz, and POz in 
a monopolar configuration referenced to linked mastoids. ABM B-Alert® soft-
ware acquires the data and quantifies alertness, engagement, and mental work-
load in real-time using proprietary software (Berka, Levendowski, Cvetinovic, 
Petrovic, & Davis, 2004). Data processing begins with the eye-blink decontami-
nated EEG files that contain second-by-second calculations of the probabilities 
of High EEG-Engagement (EEG-E) and High EEG-Workload (EEG-WL). 
Simple baseline tasks are used to fit the EEG classification algorithms to the 
individual so that the cognitive state models can then be applied to increasingly 
complex task environments. The EEG-E metric is an approximation of the 
multiple ways in which the term Cognitive Engagement has been reported in the 
literature. For instance, it has been used to describe the amount of cognitive 
processing that a learner applies to a subject (Howard, 1996) or as something 
that has to be broken during a task so that a learner can reflect on his or her 
actions (Roberts &Young, 2008). It shares similarities with alertness or attention 
and can be visual or auditory. It is analogous to the EEG-rhythm-based attention 
measures that are often associated with alpha power dynamics (Jung, Makeig, 
Stensmo, & Sejnowski 1997; Kelly, Docktree, Reily, & Robertson, 2003; 
Huang, Jung, & Maekig, 2007). Operationally, precise cognitive terms will be 
difficult to associate with EEG-derived measures of cognition in the context of 
teamwork, and functional associations will need to be derived empirically. 

Analytic Procedures 

Neurophysiologic methods can extend the use of speech for modeling 
team dynamics by providing “in the head” measures of team dynamics (Warner, 
Letsky, & Cowan 2005). As team members interact and perform their duties, 
each would be expected to exhibit varying degrees of cognitive states such as 
attention, workload, or engagement. We assume that the levels and patterns of 
variability of these components across team members reflect aspects of team 
cognition. Rather than focus on neurophysiologic markers, such as P300 or 
N400 that rapidly appear and disappear in response to many stimuli, we have 
used EEG-Eor EEG-WL which tend to persist longer across teams. 

Neurophysiologic synchrony models were developed by first aggregat-
ing the second-by-second EEG-E levels from each team member into a six-unit 
vector. We used an unsupervised artificial neural network (ANN) with a linear, 
competitive architecture to extract from these vectors collective team variables 
termed neurophysiologic synchronies of engagement (NS_E) that showed the 
engagement of each of six team members as well as of the team as a whole 
(Stevens, Galloway, Wang, & Berka, 2011). ANN classification of these 
second-by-second vectors created a symbolic state space that showed the 
possible combinations of EEG-E across members of the team. Figure 3 shows 
three symbols that illustrate the diversity of EEG-E levels across team members. 
They are samples from the 25 symbols in Fig. 4A.  
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The transition matrices in Fig. 6 are sequential snapshots of the system 
at times following the first frame when an attractor region around NS symbols 
1-4 began to form. As this activity increased, the smaller transition regions 
around NS symbols 20 and 11 began to disperse, and by 96 seconds the activity 
in the region of NS symbols 1-4 dominated. This area remained stable for the 
next two minutes (until 320 seconds) and then began to disperse with the 
appearance of new transitions around from NS 1 to NS 20. This area was stable 
for the next two minutes, and there were reciprocal from -> to transitions across 
NS symbols 1 and 20. Two possible interpretations are: (a) that this is a periodic 
attractor or (b) that the pattern represents a sequence of attractors that that form 
or dissolve with changes in task demands. After approximately two more 
minutes (at 584 seconds), the activity around NS 20 dominated. This sequence 
of attractor formation is informative because whereas most NS transitions are 
local, as indicated by the diagonals in Figs. 4 and 5, phase transitions often 
begin by temporary transitions far from the diagonal of the transition matrix.  

Though a symbolic representation of the state of the team is useful for 
characterizing team neurodynamics, it is not the best tool for quantifying team 
neurodynamics. Although there are methods for the quantitative representation 
of symbols (Daw, Finney & Tracey, 2003), we chose to perform a moving 
average window approach to derive numeric estimates of Shannon entropy of 
the NS symbol stream. Shannon entropy is the informational content of the sym-
bol stream measured by the number of binary decisions (calculated in bits) re-
quired to represent the symbol stream at a given point in time (Shannon & 
Weaver, 1949). The NS entropy measure captures the distribution of activity 
across the state space. In terms of team cognition, low entropy may be inter-
preted as a highly-ordered team neurophysiologic state, whereas high entropy 
would correspond to a more random mix of team neurophysiologic states. The 
maximum entropy for 25 randomly-distributed NS symbols is log2 (25) = 4.64. 
In comparison, an entropy value of 3.60 would result if roughly half (12) of the 
NS symbols were randomly expressed. To develop an entropy profile over a 
SPAN session, the NS Shannon entropy was calculated at each epoch using a 
sliding window of the values from the prior 100 seconds. Windowing over 
longer periods decreased the resolution of entropy changes, whereas smaller 
windows (e.g. 30 seconds) increased the potential for false positives. An inter-
esting feature of the attractor sequence in Fig. 6 was the changing levels of en-
tropy in the NS data stream, which are shown by the bar to the right of each 
frame. Periods of low entropy were associated with changes in the shape of the 
attractor. Our work represents a preliminary step in the use of entropy and its 
dynamics to understand the real-time organization of team cognition. More 
information is needed on what drives teams to these areas of high organization, 
and whether this organization is beneficial to the team. 

NS_E Dynamics Are Not Uniform 

The previous neurodynamic models are expanded in Fig. 7 for another 
SPAN team session. This sequence of figures illustrates the transformation of 
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Table 1. Comparisons between Experienced (SUB, n=6) and SOAC (n=6) 
navigation teams. 

 NS_E Entropy 
Transition Map 

Size (bytes) 
Percent 

Recurrences 
Expert 4.22 ± 0.01 15,072 ± 2,232 1.05 ± 0.62 
SOAC teams 4.08 ± 0.12 12,068 ± 2,807 3.2  ± 1.60 
Significance p < 0.001 

Kruskal-Wallis 
test 

p < 0.04 
Wilcoxen 

p <0.007 
t-Test 
(independent) 

 
These results indicate that, on the average, experienced teams have 

fewer periods of decreased NS entropy, or the decreases have a shorter period or 
amplitude, suggesting a less organized state than the SOAC teams.  

DISCUSSION 

The results presented in this paper show that the NS symbol streams 
contain multiple levels of structure that relate to the functioning of SPAN teams. 
At the simplest level, the NS_E entropy values, and presumably the sequence of 
NS_E symbols, are not random but have a structure. Part of the structure is 
imposed by the modeling system, where the linear architecture of the 
unsupervised ANN is designed so that similar symbols are located nearby and 
more different symbols are located further away. We took advantage of this 
architecture to show that many of the second-to-second changes in the EEG-E 
levels of the team occur in local neighborhoods. This does not mean that the 
NS_E transitions off the diagonal are noise. Instead, they may signal the onset of 
a significant shift across the state space. The dynamics of these shifts were 
interesting because they often exhibited reciprocal transitions across two NS 
symbols resulting in a four-point transition matrix pattern as illustrated in the 
320 second and 432 second panels of Fig. 6. Few of these off-axis transitions 
persisted longer than several minutes, and the system eventually stabilized on or 
near diagonal transition, which would seem to be the attractors of the system. 
This is further suggested by the association of different attractors with different 
segments of the task. 

A second level of structure was the fluctuations in the NS_E entropy 
stream. The periods of team cognitive re-organization identified by entropy 
fluctuations: (a) occurred as a natural product of SPAN teamwork (Figs. 7 and 
10), (b) appeared linked with episodes of communication (Fig. 8), and (c) were 
associated with external perturbations to teamwork (Fig. 9). Evidence is 
beginning to accumulate suggesting that periods of intensity or stress contribute 
to the natural decreases in NS_E entropy. These decreases indicate not only a 
change in organization but increased organization. There is a substantial 
psychology literature on the importance of conflict on the synchronization of 
group communication and interactions (Pincus, 2009). Most relevant for this 
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study are the physiological synchronizations in personal relationships 
characterized by conflict. Such conflict causes structural changes in 
interpersonal dynamics by shifting the individuals and groups into a more 
organized (i.e. rigid) state of thinking and acting. This parallels our findings of 
periods of increased team organization being associated with increased team 
stress due to visibility, the number of contacts in the vicinity, restricted 
maneuverability, etc., (Stevens et al., 2011). Though the SUB navigation teams 
encountered simulation events similar to those of SOAC teams, their increased 
training or experience did not cause interruptions or restrictions to the flow of 
cognitive information among the team members. 

The patterns of neurophysiolgic organization could be lengthy, lasting 
up to 10 minutes, and were often more associated with communication episodes 
than shorter ‘thought units’ including sentences, utterances, or who was speak-
ing. In the Debriefing segments, where speech is synchronous and most highly 
structured, there are intriguing associations between NS_E entropy and episodes 
of conversation that need to be further explored. These studies, and others being 
performed with a simpler map tracing task, suggest that the NS organizations are 
not only speaker or listener responses (Stephens et al., 2010) but also reflect 
longer periods of deliberation by the team.  

In a broad sense, we view teams as real-time dynamical systems that 
must continuously adapt to changes in task requirements and unpredictable per-
turbations to remain effective. Of course, some teams are better at this than 
others, and metrics based on communication analysis and other aspects of team 
performance have been developed to detect subtle differences in team effective-
ness. Importantly, the team neurosynchrony studies presented in this paper re-
vealed expert or novice differences, which typically manifest themselves over 
relatively long time scales of team development.  

We have integrated these data with performances from other teams that 
we have studied into a model linking NS_E entropy and state transitions with 
experience and perhaps the development of expertise (Fig. 11). The cognitive 
organization axis reflects the overall entropy levels and the diversity of 
transitions in the transition maps. A highly organized team (lower right), as 
typified by a SPAN team under stress, is shown by tightly-organized transitions 
and low entropy levels, equivalent to the random usage of only nine of the 25 
NS_E symbols. NS transitions pooled from the Scenario segments of six SOAC 
teams still show restricted transitions, but the mean entropy has increased. As 
teams progress after their initial training and develop more experience (SUB 
Teams), the entropy levels and the diversity of the transitions further increase; 
from the performance metric, this stage would approximate the ‘sweet spot’ of 
team function. The data from zero-history student teams who had not worked 
together (lower left), and were unfamiliar with both the task and domain, 
showed the highest entropy. Their entropy levels were nearly equivalent to 
randomized NS_E data streams. As discussed in the Introduction, this 
hypothesized structure is consistent with the idea that teams, like many complex 
systems, are thought to operate at an organization level between random and 
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components to better optimize the team. One of the challenges in accomplishing 
this goal is the development of rapid, relevant, and reliable models for providing 
this information to the trainers and trainees. With the creation of standardized 
models of NS_E expression (Stevens, Galloway, Wang, Berka, & Behneman, 
2011) it may now be possible to direct real-time EEG streams into our modeling 
system and rapidly report back the entropy and attractor basin status of the team. 
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